These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38006820)

  • 1. Sound attenuation in high mach number oscillating bubble media.
    Yu J; Yang D; Zhang J
    Ultrason Sonochem; 2023 Dec; 101():106699. PubMed ID: 38006820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single oscillating bubble in liquids with high Mach number.
    Zheng X; Wang X; Zhang Y; Zhang Y
    Ultrason Sonochem; 2022 Apr; 85():105985. PubMed ID: 35344862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number.
    Jamshidi R; Brenner G
    Ultrasonics; 2013 Apr; 53(4):842-8. PubMed ID: 23290824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations.
    Sojahrood AJ; Li Q; Haghi H; Karshafian R; Porter TM; Kolios MC
    Ultrason Sonochem; 2023 May; 95():106319. PubMed ID: 36931196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.
    Louisnard O
    Ultrason Sonochem; 2012 Jan; 19(1):56-65. PubMed ID: 21764348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic spectrometry of bubbles in an estuarine front: Sound speed dispersion, void fraction, and bubble density.
    Reeder DB; Joseph JE; Rago TA; Bullard JM; Honegger D; Haller MC
    J Acoust Soc Am; 2022 Apr; 151(4):2429. PubMed ID: 35461491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of mass transfer on damping mechanisms of vapor bubbles oscillating in liquids.
    Zhang Y; Gao Y; Guo Z; Du X
    Ultrason Sonochem; 2018 Jan; 40(Pt A):120-127. PubMed ID: 28946405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.
    Liu G; Jayathilake PG; Khoo BC
    Ultrasonics; 2014 Feb; 54(2):576-85. PubMed ID: 24070825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-bubble scattering acoustic fields in viscoelastic tissues under dual-frequency ultrasound.
    Wang Y; Chen D; Wu P
    Ultrason Sonochem; 2023 Oct; 99():106585. PubMed ID: 37683413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear power loss in the oscillations of coated and uncoated bubbles: Role of thermal, radiation and encapsulating shell damping at various excitation pressures.
    Sojahrood AJ; Haghi H; Li Q; Porter TM; Karshafian R; Kolios MC
    Ultrason Sonochem; 2020 Sep; 66():105070. PubMed ID: 32279052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic acoustic properties of microbubbles.
    de Jong N; Bouakaz A; Frinking P
    Echocardiography; 2002 Apr; 19(3):229-40. PubMed ID: 12022933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall.
    Suslov SA; Ooi A; Manasseh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066309. PubMed ID: 23005208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional finite element simulation of acoustic propagation in spiral bubble net of humpback whale.
    Qing X; White PR; Leighton TG; Liu S; Qiao G; Zhang Y
    J Acoust Soc Am; 2019 Sep; 146(3):1982. PubMed ID: 31590519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for estimating time-dependent acoustic cross-sections of bubbles and bubble clouds prior to the steady state.
    Clarke JW; Leighton TG
    J Acoust Soc Am; 2000 Apr; 107(4):1922-9. PubMed ID: 10790017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Study of Bubble Area Evolution During Acoustic Droplet Vaporization-Enhanced HIFU Treatment.
    Xin Y; Zhang A; Xu LX; Brian Fowlkes J
    J Biomech Eng; 2017 Sep; 139(9):. PubMed ID: 28654938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new pressure formulation for gas-compressibility dampening in bubble dynamics models.
    Gadi Man YA; Trujillo FJ
    Ultrason Sonochem; 2016 Sep; 32():247-257. PubMed ID: 27150768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplets, Bubbles and Ultrasound Interactions.
    Shpak O; Verweij M; de Jong N; Versluis M
    Adv Exp Med Biol; 2016; 880():157-74. PubMed ID: 26486337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part II: Application to ultrasonic cavitation.
    Trujillo FJ
    Ultrason Sonochem; 2020 Jul; 65():105056. PubMed ID: 32172147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs).
    Vanhille C
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.