These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38006985)

  • 1. Numerical study on particle behavior in a Y-junction mixer for supercritical water hydrolysis.
    Uruno Y; Lee J; Jeong H; Chung J
    Bioresour Technol; 2024 Feb; 393():130072. PubMed ID: 38006985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of supercritical phase and combined supercritical/subcritical conversion of lignocellulose for hexose production by using a flow reaction system.
    Zhao Y; Lu WJ; Wu HY; Liu JW; Wang HT
    Bioresour Technol; 2012 Dec; 126():391-6. PubMed ID: 22459955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined supercritical and subcritical process for cellulose hydrolysis to fermentable hexoses.
    Zhao Y; Lu WJ; Wang HT; Li D
    Environ Sci Technol; 2009 Mar; 43(5):1565-70. PubMed ID: 19350936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation and PEPT measurements of a 3D conical helical-blade mixer: a high potential solids mixer for solid-state fermentation.
    Schutyser MA; Briels WJ; Rinzema A; Boom RM
    Biotechnol Bioeng; 2003 Oct; 84(1):29-39. PubMed ID: 12910540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic approach of biomass hydrolysis in supercritical water.
    Cantero DA; Vaquerizo L; Mato F; Bermejo MD; Cocero MJ
    Bioresour Technol; 2015 Mar; 179():136-143. PubMed ID: 25536511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology.
    Zhao Y; Lu WJ; Wang HT; Yang JL
    Bioresour Technol; 2009 Dec; 100(23):5884-9. PubMed ID: 19616938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcritical and supercritical technology for the production of second generation bioethanol.
    Rostagno MA; Prado JM; Mudhoo A; Santos DT; Forster-Carneiro T; Meireles MA
    Crit Rev Biotechnol; 2015; 35(3):302-12. PubMed ID: 24494703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers.
    Ansari MA; Kim KY; Kim SM
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure.
    Ma Y; Sun CP; Fields M; Li Y; Haake DA; Churchill BM; Ho CM
    J Micromech Microeng; 2008 Mar; 18():45015. PubMed ID: 19177174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method.
    Kawasaki S; Sue K; Ookawara R; Wakashima Y; Suzuki A
    J Oleo Sci; 2010; 59(10):557-62. PubMed ID: 20877149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of the Unit Junction on the Performance of a Repetitive Structure Micromixer.
    Zhang H; Yang S; Chuai R; Li X; Mu X
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis of a rapid magnetic microfluidic mixer.
    Wen CY; Liang KP; Chen H; Fu LM
    Electrophoresis; 2011 Nov; 32(22):3268-76. PubMed ID: 22102500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water.
    Akizuki M; Fujii T; Hayashi R; Oshima Y
    J Biosci Bioeng; 2014 Jan; 117(1):10-8. PubMed ID: 23867097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDMS-based turbulent microfluidic mixer.
    You JB; Kang K; Tran TT; Park H; Hwang WR; Kim JM; Im SG
    Lab Chip; 2015 Apr; 15(7):1727-35. PubMed ID: 25671438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel.
    Kwak TJ; Nam YG; Najera MA; Lee SW; Strickler JR; Chang WJ
    PLoS One; 2016; 11(11):e0166068. PubMed ID: 27814386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of heat transfer in parallel channels with water at supercritical pressure.
    Shitsi E; Kofi Debrah S; Yao Agbodemegbe V; Ampomah-Amoako E
    Heliyon; 2017 Nov; 3(11):e00453. PubMed ID: 29264412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Numerical Investigation of the Mixing Performance in a Y-Junction Microchannel Induced by Acoustic Streaming.
    Endaylalu SA; Tien WH
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A practical guide to the staggered herringbone mixer.
    Williams MS; Longmuir KJ; Yager P
    Lab Chip; 2008 Jul; 8(7):1121-9. PubMed ID: 18584088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of silica nanoparticles in supercritical carbon dioxide.
    Vishnyakov A; Shen Y; Tomassone MS
    J Chem Phys; 2008 Nov; 129(17):174704. PubMed ID: 19045367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.