These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 38007116)
1. Towards a sustainable environment and carbon neutrality: Optimal sizing of standalone, green, reliable, and affordable water-power cogeneration systems. Kiehbadroudinezhad M; Merabet A; Al-Durra A; Hosseinzadeh-Bandbafha H; Wright MM; El-Saadany E Sci Total Environ; 2024 Feb; 912():168668. PubMed ID: 38007116 [TBL] [Abstract][Full Text] [Related]
2. Optimization of off-grid hybrid renewable energy systems for cost-effective and reliable power supply in Gaita Selassie Ethiopia. Agajie EF; Agajie TF; Amoussou I; Fopah-Lele A; Nsanyuy WB; Khan B; Bajaj M; Zaitsev I; Tanyi E Sci Rep; 2024 May; 14(1):10929. PubMed ID: 38740883 [TBL] [Abstract][Full Text] [Related]
3. Optimal sizing of hybrid solar/wind/hydroelectric pumped storage energy system in Egypt based on different meta-heuristic techniques. Diab AAZ; Sultan HM; Kuznetsov ON Environ Sci Pollut Res Int; 2020 Sep; 27(26):32318-32340. PubMed ID: 31701416 [TBL] [Abstract][Full Text] [Related]
4. Techno-economic analysis of an HRES with fuel cells, solar panels, and wind turbines using an improved Al-Biruni algorithm. He B; Ismail N; Leng KKK; Chen G Heliyon; 2023 Dec; 9(12):e22828. PubMed ID: 38125459 [TBL] [Abstract][Full Text] [Related]
5. Multiobjective Sizing of an Autonomous Hybrid Microgrid Using a Multimodal Delayed PSO Algorithm: A Case Study of a Fishing Village. Mouachi R; Jallal MA; Gharnati F; Raoufi M Comput Intell Neurosci; 2020; 2020():8894094. PubMed ID: 32831822 [TBL] [Abstract][Full Text] [Related]
6. Utilizing support vector machines to foster sustainable development and innovation in the clean energy sector via green finance. Wang W; Huang H; Peng X; Wang Z; Zeng Y J Environ Manage; 2024 Jun; 360():121225. PubMed ID: 38796867 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of techno-economic design andimplementation of solar-wind hybrid microgridsystem for a small community. Moomin AS; Yousif M; Khalid HA; Abbas Kazmi SA; Alghamdi TAH Heliyon; 2024 Sep; 10(17):e35985. PubMed ID: 39281632 [TBL] [Abstract][Full Text] [Related]
8. Environmental assessment of optimized renewable energy-based microgrids integrated desalination plant: considering human health, ecosystem quality, climate change, and resources. Kiehbadroudinezhad M; Merabet A; Hosseinzadeh-Bandbafha H; Ghenai C Environ Sci Pollut Res Int; 2023 Mar; 30(11):29888-29908. PubMed ID: 36418817 [TBL] [Abstract][Full Text] [Related]
10. Enhancing Ethiopian power distribution with novel hybrid renewable energy systems for sustainable reliability and cost efficiency. Agajie TF; Fopah-Lele A; Amoussou I; Khan B; Bajaj M; Zaitsev I; Tanyi E Sci Rep; 2024 May; 14(1):10711. PubMed ID: 38730031 [TBL] [Abstract][Full Text] [Related]
11. Economic analysis of hydrogen energy systems: A global perspective. Liu G; Guo T; Wang P; Jiang H; Wang H; Zhao X; Wei X; Xu Y Heliyon; 2024 Sep; 10(18):e36219. PubMed ID: 39347416 [TBL] [Abstract][Full Text] [Related]
12. Optimal design for a hybrid microgrid-hydrogen storage facility in Saudi Arabia. Alturki AA Energy Sustain Soc; 2022; 12(1):24. PubMed ID: 35669609 [TBL] [Abstract][Full Text] [Related]
13. Optimal planning and designing of microgrid systems with hybrid renewable energy technologies for sustainable environment in cities. Kurukuri P; Mohamed MR; Raavi PH; Arya Y Environ Sci Pollut Res Int; 2024 May; 31(22):32264-32281. PubMed ID: 38644424 [TBL] [Abstract][Full Text] [Related]
14. Examining nonlinear effects of socioecological drivers on urban solar energy development in China using machine learning and high-dimensional data. Zhao Y; Ge W; Sun Y; Qiao G; Zhu D; Ai H J Environ Manage; 2024 Jun; 360():121092. PubMed ID: 38733843 [TBL] [Abstract][Full Text] [Related]
15. Optimisation of a standalone photovoltaic electric vehicle charging station using the loss of power supply probability. Chen Z; Ghosh A; Lopez NSA Heliyon; 2023 Oct; 9(10):e20836. PubMed ID: 37867817 [TBL] [Abstract][Full Text] [Related]
16. Wang Y; He X; Liu Q; Razmjooy S Heliyon; 2024 Jun; 10(12):e32712. PubMed ID: 39040855 [TBL] [Abstract][Full Text] [Related]
17. Multi-objective pathfinder algorithm for multi-objective optimal power flow problem with random renewable energy sources: wind, photovoltaic and tidal. Li N; Zhou G; Zhou Y; Deng W; Luo Q Sci Rep; 2023 Jun; 13(1):10647. PubMed ID: 37391510 [TBL] [Abstract][Full Text] [Related]
18. Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling using particle swarm optimization. Teferra DM; Ngoo LMH; Nyakoe GN Heliyon; 2023 Jan; 9(1):e12802. PubMed ID: 36704286 [TBL] [Abstract][Full Text] [Related]
19. Exergy, exergoeconomic optimization and exergoenvironmental analysis of a hybrid solar, wind, and marine energy power system: A strategy for carbon-free electrical production. Zainul R; Basem A; J Alfaker M; Sharma P; Kumar A; Al-Bahrani M; Elawady A; Abbas M; Fooladi H; Pandey S Heliyon; 2024 Aug; 10(16):e35171. PubMed ID: 39253151 [TBL] [Abstract][Full Text] [Related]
20. Variable renewable energy penetration impact on productivity: A case study of poultry farming. Dupas MC; Parison S; Noel V; Chatzimpiros P; Herbert É PLoS One; 2023; 18(10):e0286242. PubMed ID: 37782652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]