BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38007270)

  • 1. Voltage-gated sodium channels, sodium transport and progression of solid tumours.
    Malcolm JR; Sajjaboontawee N; Yerlikaya S; Plunkett-Jones C; Boxall PJ; Brackenbury WJ
    Curr Top Membr; 2023; 92():71-98. PubMed ID: 38007270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual roles of voltage-gated sodium channels in development and cancer.
    Patel F; Brackenbury WJ
    Int J Dev Biol; 2015; 59(7-9):357-66. PubMed ID: 26009234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage gated sodium channels in cancer and their potential mechanisms of action.
    Angus M; Ruben P
    Channels (Austin); 2019 Dec; 13(1):400-409. PubMed ID: 31510893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-gated sodium channels and metastatic disease.
    Brackenbury WJ
    Channels (Austin); 2012; 6(5):352-61. PubMed ID: 22992466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Lidocaine in oncological surgery: the role of blocking in voltage-gated sodium channels. A narrative review].
    Soto G; Calero F; Naranjo M
    Braz J Anesthesiol; 2020; 70(5):527-533. PubMed ID: 32951865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer.
    Yang M; Kozminski DJ; Wold LA; Modak R; Calhoun JD; Isom LL; Brackenbury WJ
    Breast Cancer Res Treat; 2012 Jul; 134(2):603-15. PubMed ID: 22678159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium homeostasis in the tumour microenvironment.
    Leslie TK; James AD; Zaccagna F; Grist JT; Deen S; Kennerley A; Riemer F; Kaggie JD; Gallagher FA; Gilbert FJ; Brackenbury WJ
    Biochim Biophys Acta Rev Cancer; 2019 Dec; 1872(2):188304. PubMed ID: 31348974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Genotypes and Phenotypes of the Mutations in Voltage- Gated Sodium Channel α Subunits in Epilepsy.
    Feng Y; Zhang S; Zhang Z; Guo J; Tan Z; Zhu Y; Tao J; Ji YH
    CNS Neurol Disord Drug Targets; 2019; 18(4):266-272. PubMed ID: 30370865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent current blockers of voltage-gated sodium channels: a clinical opportunity for controlling metastatic disease.
    Djamgoz MB; Onkal R
    Recent Pat Anticancer Drug Discov; 2013 Jan; 8(1):66-84. PubMed ID: 23116083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Cell Cycle on Cell Surface Expression of Voltage-Gated Sodium Channels and Na
    Edenfield S; Sims AM; Porretta C; Gould HJ; Paul D
    Cells; 2022 Oct; 11(20):. PubMed ID: 36291108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-Gated Na+ Channels: Not Just for Conduction.
    Kruger LC; Isom LL
    Cold Spring Harb Perspect Biol; 2016 Jun; 8(6):. PubMed ID: 27252364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-gated sodium channels in cancer and their specific inhibitors.
    Bian Y; Tuo J; He L; Li W; Li S; Chu H; Zhao Y
    Pathol Res Pract; 2023 Nov; 251():154909. PubMed ID: 37939447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: clinical potential of neonatal Nav1.5 in breast cancer.
    Onkal R; Djamgoz MB
    Eur J Pharmacol; 2009 Dec; 625(1-3):206-19. PubMed ID: 19835862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarized localization of voltage-gated Na+ channels is regulated by concerted FGF13 and FGF14 action.
    Pablo JL; Wang C; Presby MM; Pitt GS
    Proc Natl Acad Sci U S A; 2016 May; 113(19):E2665-74. PubMed ID: 27044086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation.
    Fraser SP; Ozerlat-Gunduz I; Brackenbury WJ; Fitzgerald EM; Campbell TM; Coombes RC; Djamgoz MB
    Philos Trans R Soc Lond B Biol Sci; 2014 Mar; 369(1638):20130105. PubMed ID: 24493753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the pharmacological properties of rat Na(V)1.8 with rat Na(V)1.2a and human Na(V)1.5 voltage-gated sodium channel subtypes using a membrane potential sensitive dye and FLIPR.
    Vickery RG; Amagasu SM; Chang R; Mai N; Kaufman E; Martin J; Hembrador J; O'Keefe MD; Gee C; Marquess D; Smith JA
    Recept Channels; 2004; 10(1):11-23. PubMed ID: 14769548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An emerging role for voltage-gated Na+ channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers.
    Brackenbury WJ; Djamgoz MB; Isom LL
    Neuroscientist; 2008 Dec; 14(6):571-83. PubMed ID: 18940784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells?
    Besson P; Driffort V; Bon É; Gradek F; Chevalier S; Roger S
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt B):2493-501. PubMed ID: 25922224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking the stability of human detergent-solubilised voltage-gated sodium channels for structural studies using eel as a reference.
    Slowik D; Henderson R
    Biochim Biophys Acta; 2015 Jul; 1848(7):1545-51. PubMed ID: 25838126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated role of voltage-gated sodium channels and the Na+/H+ exchanger in sustaining microglial activation during inflammation.
    Hossain MM; Sonsalla PK; Richardson JR
    Toxicol Appl Pharmacol; 2013 Dec; 273(2):355-64. PubMed ID: 24070585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.