These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38007896)

  • 1. Reduction and precipitation of chromium(VI) using a palladized membrane biofilm reactor.
    Wu C; Zhou J; Pang S; Yang L; Lichtfouse E; Liu H; Xia S; Rittmann BE
    Water Res; 2024 Feb; 249():120878. PubMed ID: 38007896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term Continuous Test of H
    Cheng J; Long M; Zhou C; Ilhan ZE; Calvo DC; Rittmann BE
    Environ Sci Technol; 2023 Aug; 57(32):11948-11957. PubMed ID: 37531623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor.
    Chung J; Nerenberg R; Rittmann BE
    Water Res; 2006 May; 40(8):1634-42. PubMed ID: 16564559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioreduction of Chromate in a Methane-Based Membrane Biofilm Reactor.
    Lai CY; Zhong L; Zhang Y; Chen JX; Wen LL; Shi LD; Sun YP; Ma F; Rittmann BE; Zhou C; Tang Y; Zheng P; Zhao HP
    Environ Sci Technol; 2016 Jun; 50(11):5832-9. PubMed ID: 27161770
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Long M; Long X; Zheng CW; Luo YH; Zhou C; Rittmann BE
    Environ Sci Technol; 2021 May; 55(9):6309-6319. PubMed ID: 33848132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction.
    Yong P; Liu W; Zhang Z; Beauregard D; Johns ML; Macaskie LE
    Biotechnol Lett; 2015 Nov; 37(11):2181-91. PubMed ID: 26169199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperation and competition between denitrification and chromate reduction in a hydrogen-based membrane biofilm reactor.
    Zhou L; Wu F; Lai Y; Zhao B; Zhang W; Rittmann BE
    Water Res; 2024 Aug; 259():121870. PubMed ID: 38843627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III).
    K'Owino IO; Omole MA; Sadik OA
    J Environ Monit; 2007 Jul; 9(7):657-65. PubMed ID: 17607385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor.
    Luo JH; Wu M; Liu J; Qian G; Yuan Z; Guo J
    Environ Int; 2019 Sep; 130():104926. PubMed ID: 31228790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic methane oxidation coupled to chromate reduction in a methane-based membrane biofilm batch reactor.
    Dong QY; Wang Z; Shi LD; Lai CY; Zhao HP
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):26286-26292. PubMed ID: 31286367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction and removal of Cr(VI) in water using biosynthesized palladium nanoparticles loaded Shewanella oneidensis MR-1.
    Zhang Y; Zhao Q; Chen B
    Sci Total Environ; 2022 Jan; 805():150336. PubMed ID: 34537699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palladium Recovery in a H2-Based Membrane Biofilm Reactor: Formation of Pd(0) Nanoparticles through Enzymatic and Autocatalytic Reductions.
    Zhou C; Ontiveros-Valencia A; Wang Z; Maldonado J; Zhao HP; Krajmalnik-Brown R; Rittmann BE
    Environ Sci Technol; 2016 Mar; 50(5):2546-55. PubMed ID: 26883809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using non-invasive magnetic resonance imaging (MRI) to assess the reduction of Cr(VI) using a biofilm-palladium catalyst.
    Beauregard DA; Yong P; Macaskie LE; Johns ML
    Biotechnol Bioeng; 2010 Sep; 107(1):11-20. PubMed ID: 20506297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-removal of 2,4-dichlorophenol and nitrate using a palladized biofilm: Denitrification-promoted microbial mineralization following catalytic dechlorination.
    Wu C; Zhou L; Zhou C; Zhou Y; Xia S; Rittmann BE
    J Hazard Mater; 2022 Jan; 422():126916. PubMed ID: 34425432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenic Palladium Improved Perchlorate Reduction during Nitrate Co-Reduction by Diverting Electron Flow in a Hydrogenotrophic Biofilm.
    Zhou J; Yang L; Li X; Dai B; He J; Wu C; Pang S; Xia S; Rittmann BE
    Environ Sci Technol; 2024 Jun; 58(24):10644-10651. PubMed ID: 38832916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium nanoparticles dispersed on functionalized macadamia nutshell biomass for formic acid-mediated removal of chromium(VI) from aqueous solution.
    Moyo M; Modise SJ; Pakade VE
    Sci Total Environ; 2020 Nov; 743():140614. PubMed ID: 32659556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioreduction of Cr(VI) using a propane-based membrane biofilm reactor.
    Liu C; Zhang L; Yu H; Zhang H; Niu H; Gai J
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):32683-32695. PubMed ID: 36469275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A continuous electroreduction cell composed of palladium nanocatalyst immobilized on discarded cigarette filters as an active bed for Cr(VI) removal from groundwater.
    Dorosti M; Baghdadi M; Nasimi S
    J Environ Manage; 2020 Jun; 264():110409. PubMed ID: 32250883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate effects on chromate reduction in a methane-based biofilm.
    Zhong L; Lai CY; Shi LD; Wang KD; Dai YJ; Liu YW; Ma F; Rittmann BE; Zheng P; Zhao HP
    Water Res; 2017 May; 115():130-137. PubMed ID: 28273443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical synthesis of palladium nanoparticles: The influence of chemical fixatives used in electron microscopy on nanoparticle formation and catalytic performance.
    Tan L; Ray Jones T; Poitras J; Xie J; Liu X; Southam G
    J Hazard Mater; 2020 Nov; 398():122945. PubMed ID: 32516730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.