These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38007941)

  • 41. Organic-Inorganic Hybrid Cathode with Dual Energy-Storage Mechanism for Ultrahigh-Rate and Ultralong-Life Aqueous Zinc-Ion Batteries.
    Ma X; Cao X; Yao M; Shan L; Shi X; Fang G; Pan A; Lu B; Zhou J; Liang S
    Adv Mater; 2022 Feb; 34(6):e2105452. PubMed ID: 34786778
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphology restrained growth of V
    Narayanasamy M; Kirubasankar B; Shi M; Velayutham S; Wang B; Angaiah S; Yan C
    Chem Commun (Camb); 2020 Jun; 56(47):6412-6415. PubMed ID: 32391833
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flexible Electron-Rich Ion Channels Enable Ultrafast and Stable Aqueous Zinc-Ion Storage.
    Cheng L; Zhu Q; Liang J; Tang M; Yang Y; Wang S; Ji P; Wang G; Chen W; Zhang X; Wang H
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54096-54105. PubMed ID: 34749501
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tremella-like Hydrated Vanadium Oxide Cathode with an Architectural Design Strategy toward Ultralong Lifespan Aqueous Zinc-Ion Batteries.
    Guan X; Sun Q; Sun C; Duan T; Nie W; Liu Y; Zhao K; Cheng H; Lu X
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41688-41697. PubMed ID: 34436858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulating the Interlayer Spacing of Vanadium Oxide by In Situ Polyaniline Intercalation Enables an Improved Aqueous Zinc-Ion Storage Performance.
    Yin C; Pan C; Liao X; Pan Y; Yuan L
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39347-39354. PubMed ID: 34383482
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-Rate and Ultra-Stable aqueous Zinc-Ion batteries enabled by Potassium-Infused ammonium vanadate nanosheets.
    Cao J; Ou T; Sun Y; Wu H; Luo D; Yang C; Zhang L; Zhang D; Zhang X; Qin J; Yang X
    J Colloid Interface Sci; 2024 Jul; 665():32-40. PubMed ID: 38513406
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Construction of 2D sandwich-like Na
    Sun R; Dong S; Guo X; Xia P; Lu S; Zhang Y; Fan H
    J Colloid Interface Sci; 2024 Feb; 655():226-233. PubMed ID: 37944370
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hierarchical K-Birnessite-MnO
    Wang G; Wang Y; Guan B; Liu J; Zhang Y; Shi X; Tang C; Li G; Li Y; Wang X; Li L
    Small; 2021 Nov; 17(45):e2104557. PubMed ID: 34643326
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heterostructure Engineering of NiCo-LDHs for Enhanced Energy Storage Performance in Aqueous Zinc-Ion Batteries.
    Deng X; Zhang P; Wan Z; Ma Z; Wang X
    Small; 2024 Mar; ():e2311332. PubMed ID: 38431963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electropolymerization of a Carbonyl-Modified Dihydropyrazine Derivative for Aqueous Zinc Batteries with Ultrahigh Cycling Stability.
    Wang D; Bai Y; Zhou Z; Yao Q; Cao W; Ma Y; Wang C
    ACS Appl Mater Interfaces; 2024 May; 16(20):26121-26129. PubMed ID: 38728577
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery.
    Li Q; Rui X; Chen D; Feng Y; Xiao N; Gan L; Zhang Q; Yu Y; Huang S
    Nanomicro Lett; 2020 Mar; 12(1):67. PubMed ID: 34138305
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Boosting the Cyclic Stability of Aqueous Zinc-Ion Battery Based on Al-Doped V
    Qian Li ; Wei T; Ma K; Yang G; Wang C
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20888-20894. PubMed ID: 31117461
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing the kinetics of vanadium oxides via conducting polymer and metal ions co-intercalation for high-performance aqueous zinc-ions batteries.
    Yan X; Feng X; Hao B; Liu J; Yu Y; Qi J; Wang H; Wang Z; Hu Y; Fan X; Li C; Liu J
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):204-213. PubMed ID: 35988515
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intercalant-induced V
    Wang Y; Wei S; Qi ZH; Chen S; Zhu K; Ding H; Cao Y; Zhou Q; Wang C; Zhang P; Guo X; Yang X; Wu X; Song L
    Proc Natl Acad Sci U S A; 2023 Mar; 120(13):e2217208120. PubMed ID: 36940337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Copper-doped layered Fe
    Li J; Shao W; Zhang D; Wang Q
    J Colloid Interface Sci; 2023 Dec; 652(Pt A):500-507. PubMed ID: 37604061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Binder-Free V
    Diem AM; Fenk B; Bill J; Burghard Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular Crowded ″Water-in-Salt″ Polymer Gel Electrolyte for an Ultra-stable Zn-Ion Battery.
    Samanta P; Ghosh S; Kolya H; Kang CW; Murmu NC; Kuila T
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1138-1148. PubMed ID: 34932312
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In Situ Electrochemical Transformation toward Structure Optimized VEG@MXene Cathode for Enhanced Zinc-Ion Storage.
    Li X; Zhu X; Cao Z; Xu Z; Shen J; Ye M
    Small; 2022 Mar; 18(9):e2105325. PubMed ID: 34921496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New Insight on K
    Zhou T; Zhu L; Xie L; Han Q; Yang X; Cao X; Ma J
    Small; 2022 Mar; 18(12):e2107102. PubMed ID: 35088521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Capacity-enhanced and kinetic-expedited zinc-ion storage ability in a Zn
    Yang L; Jian J; Wang S; Wang S; Abliz A; Zhao F; Li H; Wu J; Wang Y
    Dalton Trans; 2022 Oct; 51(40):15436-15445. PubMed ID: 36156619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.