These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38008057)

  • 41. A Dual-Functional MXene-Based Bioanode for Wearable Self-Charging Biosupercapacitors.
    Guan S; Yang Y; Wang Y; Zhu X; Ye D; Chen R; Liao Q
    Adv Mater; 2024 Jan; 36(1):e2305854. PubMed ID: 37671789
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A shriveled rectangular carbon tube with the concave surface for high-performance enzymatic glucose/O
    Kang Z; Job Zhang YP; Zhu Z
    Biosens Bioelectron; 2019 May; 132():76-83. PubMed ID: 30856430
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving the performance of a membraneless and mediatorless glucose-air biofuel cell with a TiO2 nanotube photoanode.
    Han L; Bai L; Zhu C; Wang Y; Dong S
    Chem Commun (Camb); 2012 Jun; 48(49):6103-5. PubMed ID: 22588223
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers.
    Pinyou P; Ruff A; Pöller S; Alsaoub S; Leimkühler S; Wollenberger U; Schuhmann W
    Bioelectrochemistry; 2016 Jun; 109():24-30. PubMed ID: 26775204
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct Enzymatic Glucose/O
    Gholami F; Navaee A; Salimi A; Ahmadi R; Korani A; Hallaj R
    Sci Rep; 2018 Oct; 8(1):15103. PubMed ID: 30305656
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An oxygen-independent and membrane-less glucose biobattery/supercapacitor hybrid device.
    Xiao X; Conghaile PÓ; Leech D; Ludwig R; Magner E
    Biosens Bioelectron; 2017 Dec; 98():421-427. PubMed ID: 28711029
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioanode with alcohol dehydrogenase undergoing a direct electron transfer on functionalized gold nanoparticles for an application in biofuel cells for glycerol conversion.
    Ratautas D; Tetianec L; Marcinkevičienė L; Meškys R; Kulys J
    Biosens Bioelectron; 2017 Dec; 98():215-221. PubMed ID: 28683414
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-dimensional graphene paper supported flexible enzymatic fuel cells.
    Shen F; Pankratov D; Halder A; Xiao X; Toscano MD; Zhang J; Ulstrup J; Gorton L; Chi Q
    Nanoscale Adv; 2019 Jul; 1(7):2562-2570. PubMed ID: 36132730
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carbon nanotube-hydroxyapatite nanocomposite: a novel platform for glucose/O2 biofuel cell.
    Zhao HY; Zhou HM; Zhang JX; Zheng W; Zheng YF
    Biosens Bioelectron; 2009 Oct; 25(2):463-8. PubMed ID: 19713096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Operation stability of chitosan and nafion-chitosan coatings on bioelectrodes in enzymatic glucose biofuel cells.
    Kuis R; Hasan MQ; Slaughter G
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1765-1768. PubMed ID: 31946239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon nanorods assembled coral-like hierarchical meso-macroporous carbon as sustainable materials for efficient biosensing and biofuel cell.
    Xu C; Li G; Zhou M; Hu Z
    Anal Chim Acta; 2022 Aug; 1220():339994. PubMed ID: 35868708
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel microbial fuel cell sensor with biocathode sensing element.
    Jiang Y; Liang P; Liu P; Wang D; Miao B; Huang X
    Biosens Bioelectron; 2017 Aug; 94():344-350. PubMed ID: 28319901
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film.
    Tan Y; Deng W; Ge B; Xie Q; Huang J; Yao S
    Biosens Bioelectron; 2009 Mar; 24(7):2225-31. PubMed ID: 19153037
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Screen-Printable Functional Nanomaterials for Flexible and Wearable Single-Enzyme-Based Energy-Harvesting and Self-Powered Biosensing Devices.
    Veenuttranon K; Kaewpradub K; Jeerapan I
    Nanomicro Lett; 2023 Mar; 15(1):85. PubMed ID: 37002513
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Miniaturized Microfluidic Electrochemical Biosensors Powered by Enzymatic Biofuel Cell.
    Wang L; Zhu W; Zhang J; Zhu JJ
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831941
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sustainable and high-power wearable glucose biofuel cell using long-term and high-speed flow in sportswear fabrics.
    Wang C; Shim E; Chang HK; Lee N; Kim HR; Park J
    Biosens Bioelectron; 2020 Dec; 169():112652. PubMed ID: 33007613
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling, design guidelines, and detection limits of self-powered enzymatic biofuel cell-based sensors.
    Jin X; Bandodkar AJ; Fratus M; Asadpour R; Rogers JA; Alam MA
    Biosens Bioelectron; 2020 Nov; 168():112493. PubMed ID: 32889394
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Faraday cage-type self-powered immunosensor based on hybrid enzymatic biofuel cell.
    Gong Y; Han H; Ma Z
    Anal Bioanal Chem; 2023 Dec; 415(29-30):7223-7233. PubMed ID: 37870585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High performance thylakoid bio-solar cell using laccase enzymatic biocathodes.
    Rasmussen M; Shrier A; Minteer SD
    Phys Chem Chem Phys; 2013 Jun; 15(23):9062-5. PubMed ID: 23666112
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Redox-Polymer-Wired [NiFeSe] Hydrogenase Variants with Enhanced O
    Ruff A; Szczesny J; Vega M; Zacarias S; Matias PM; Gounel S; Mano N; Pereira IAC; Schuhmann W
    ChemSusChem; 2020 Jul; 13(14):3627-3635. PubMed ID: 32339386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.