These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38008325)
1. Assessing transport timescales in Lake Huron's Hammond Bay: The crucial role of the Straits of Mackinac's exchange flows. Memari S; Phanikumar MS Sci Total Environ; 2024 Feb; 912():168777. PubMed ID: 38008325 [TBL] [Abstract][Full Text] [Related]
2. Hydrodynamic modelling of a polluted tropical bay: Assessment of anthropogenic impacts on freshwater runoff and estuarine water renewal. Tosic M; Martins F; Lonin S; Izquierdo A; Restrepo JD J Environ Manage; 2019 Apr; 236():695-714. PubMed ID: 30772727 [TBL] [Abstract][Full Text] [Related]
3. The influence of bottom boundary layer hydrodynamics on sediment focusing in a contaminated bay. Graham ND; Bouffard D; Loizeau JL Environ Sci Pollut Res Int; 2016 Dec; 23(24):25412-25426. PubMed ID: 27696073 [TBL] [Abstract][Full Text] [Related]
4. Wind-Driven Sediment Resuspension in the World's Fourth Largest Lake Contributes Substantial Phosphorus Load to the 11th Largest Lake. Scavia D; Calappi TJ; Godwin CM; Hill B; Veliz M; Wang YC Environ Sci Technol; 2022 Aug; 56(15):11061-11070. PubMed ID: 35861712 [TBL] [Abstract][Full Text] [Related]
5. Lake Huron's Phosphorus Contributions to the St. Clair-Detroit River Great Lakes Connecting Channel. Scavia D; Anderson EJ; Dove A; Hill B; Long CM; Wang YC Environ Sci Technol; 2020 May; 54(9):5550-5559. PubMed ID: 32271010 [TBL] [Abstract][Full Text] [Related]
6. Do invasive mussels restrict offshore phosphorus transport in Lake Huron? Cha Y; Stow CA; Nalepa TF; Reckhow KH Environ Sci Technol; 2011 Sep; 45(17):7226-31. PubMed ID: 21812427 [TBL] [Abstract][Full Text] [Related]
7. Fine-scale geographic risk assessment of oxybenzone sunscreen pollution within Hanauma Bay using hydrodynamic characterization and modeling. Doust SN; Haghshenas SA; Bishop EE; Risk MJ; Downs CA Sci Total Environ; 2024 Jan; 906():167614. PubMed ID: 37804976 [TBL] [Abstract][Full Text] [Related]
8. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology. Paterson G; Ryder M; Drouillard KG; Haffner GD Environ Toxicol Chem; 2016 Jan; 35(1):65-73. PubMed ID: 26211754 [TBL] [Abstract][Full Text] [Related]
9. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie. Peat TB; Hayden TA; Gutowsky LF; Vandergoot CS; Fielder DG; Madenjian CP; Murchie KJ; Dettmers JM; Krueger CC; Cooke SJ J Therm Biol; 2015 Oct; 53():98-106. PubMed ID: 26590461 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of Microcystis buoyancy in western Lake Erie and Saginaw Bay of Lake Huron. Den Uyl PA; Harrison SB; Godwin CM; Rowe MD; Strickler JR; Vanderploeg HA Harmful Algae; 2021 Aug; 108():102102. PubMed ID: 34588123 [TBL] [Abstract][Full Text] [Related]
11. A dynamic multimedia environmental and bioaccumulation model for brominated flame retardants in Lake Huron and Lake Erie, USA. Lim DH; Lastoskie CM Environ Toxicol Chem; 2011 May; 30(5):1018-25. PubMed ID: 21312244 [TBL] [Abstract][Full Text] [Related]
12. Modelling the transport of sloughed cladophora in the nearshore zone of Lake Michigan. Shen C; Liao Q; Bootsma HA; Lafrancois BM J Environ Manage; 2022 Dec; 323():116203. PubMed ID: 36108511 [TBL] [Abstract][Full Text] [Related]
13. Cross-basin comparison of mercury bioaccumulation in Lake Huron lake trout emphasizes ecological characteristics. Abma RA; Paterson G; McLeod A; Haffner GD Environ Toxicol Chem; 2015 Feb; 34(2):355-9. PubMed ID: 25402744 [TBL] [Abstract][Full Text] [Related]
14. Biofouling of a unionid mussel by dreissenid mussels in nearshore zones of the Great Lakes. Larson JH; Bailey SW; Evans MA Ecol Evol; 2022 Dec; 12(12):e9557. PubMed ID: 36523516 [TBL] [Abstract][Full Text] [Related]
15. Impacts of lindane usage in the Canadian Prairies on the Great Lakes ecosystem. 2. Modeled fluxes and loadings to the Great Lakes. Ma J; Daggupaty S; Harner T; Blanchard P; Waite D Environ Sci Technol; 2004 Feb; 38(4):984-90. PubMed ID: 14998008 [TBL] [Abstract][Full Text] [Related]
16. Distributions of Cisco (Coregonus artedi) in the upper Great Lakes in the mid-twentieth century, when populations were in decline. Kao YC; Renauer-Bova RE; Bunnell DB; Gorman OT; Eshenroder RL PLoS One; 2022; 17(12):e0276109. PubMed ID: 36548254 [TBL] [Abstract][Full Text] [Related]
17. Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective. Wu T; Qin B; Brookes JD; Yan W; Ji X; Feng J Sci Total Environ; 2019 Feb; 650(Pt 1):1554-1565. PubMed ID: 30308841 [TBL] [Abstract][Full Text] [Related]
18. Polybrominated diphenyl ethers in the sediments of the Great Lakes. 2. Lakes Michigan and Huron. Song W; Li A; Ford JC; Sturchio NC; Rockne KJ; Buckley DR; Mills WJ Environ Sci Technol; 2005 May; 39(10):3474-9. PubMed ID: 15954222 [TBL] [Abstract][Full Text] [Related]
19. Estimating renewal timescales with residence time and connectivity in an urban man-made lake in China. Gao X; Xu L; Zhang C Environ Sci Pollut Res Int; 2016 Jul; 23(14):13973-83. PubMed ID: 27040544 [TBL] [Abstract][Full Text] [Related]
20. Hydrodynamic properties of San Quintin Bay, Baja California: Merging models and observations. Melaku Canu D; Aveytua-Alcázar L; Camacho-Ibar VF; Querin S; Solidoro C Mar Pollut Bull; 2016 Jul; 108(1-2):203-14. PubMed ID: 27140393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]