These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38008474)

  • 1. A scientometric analysis and recent advances of emerging chitosan-based biomaterials as potential catalyst for biodiesel production: A review.
    Prabakaran S; Rupesh KJ; Keeriti IS; Sudalai S; Pragadeeswara Venkatamani G; Arumugam A
    Carbohydr Polym; 2024 Feb; 325():121567. PubMed ID: 38008474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pristine and modified chitosan as solid catalysts for catalysis and biodiesel production: A minireview.
    Dhakshinamoorthy A; Jacob M; Vignesh NS; Varalakshmi P
    Int J Biol Macromol; 2021 Jan; 167():807-833. PubMed ID: 33144253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on applications of chitosan-based Schiff bases.
    Antony R; Arun T; Manickam STD
    Int J Biol Macromol; 2019 May; 129():615-633. PubMed ID: 30753877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle assessment of biodiesel production by using impregnated magnetic biochar derived from waste palm kernel shell.
    Anak Erison AE; Tan YH; Mubarak NM; Kansedo J; Khalid M; Abdullah MO; Ghasemi M
    Environ Res; 2022 Nov; 214(Pt 4):114149. PubMed ID: 36007570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart waste management of waste cooking oil for large scale high quality biodiesel production using Sr-Ti mixed metal oxide as solid catalyst: Optimization and E-metrics studies.
    Sahani S; Roy T; Sharma YC
    Waste Manag; 2020 May; 108():189-201. PubMed ID: 32360999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan as a sustainable organocatalyst: a concise overview.
    El Kadib A
    ChemSusChem; 2015 Jan; 8(2):217-44. PubMed ID: 25470553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards sustainable biodiesel and chemical production: Multifunctional use of heterogeneous catalyst from littered Tectona grandis leaves.
    Gohain M; Laskar K; Phukon H; Bora U; Kalita D; Deka D
    Waste Manag; 2020 Feb; 102():212-221. PubMed ID: 31683077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in the Synthesis, Properties, and Applications of Modified Chitosan Derivatives: Challenges and Opportunities.
    Boominathan T; Sivaramakrishna A
    Top Curr Chem (Cham); 2021 Apr; 379(3):19. PubMed ID: 33829312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan modifications for adsorption of pollutants - A review.
    Saheed IO; Oh WD; Suah FBM
    J Hazard Mater; 2021 Apr; 408():124889. PubMed ID: 33418525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan as a reusable solid base catalyst for Knoevenagel condensation reaction.
    Sakthivel B; Dhakshinamoorthy A
    J Colloid Interface Sci; 2017 Jan; 485():75-80. PubMed ID: 27649093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current and emerging applications of saccharide-modified chitosan: a critical review.
    Kazemi Shariat Panahi H; Dehhaghi M; Amiri H; Guillemin GJ; Gupta VK; Rajaei A; Yang Y; Peng W; Pan J; Aghbashlo M; Tabatabaei M
    Biotechnol Adv; 2023 Sep; 66():108172. PubMed ID: 37169103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and catalytic properties of calcium oxide obtained from organic ash over a titanium nanocatalyst for biodiesel production from dairy scum.
    Nabgan W; Nabgan B; Ikram M; Jadhav AH; Ali MW; Ul-Hamid A; Nam H; Lakshminarayana P; Kumar A; Bahari MB; Khusnun NF
    Chemosphere; 2022 Mar; 290():133296. PubMed ID: 34914962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developments in Titanium-Based Alkali and Alkaline Earth Metal Oxide Catalysts for Sustainable Biodiesel Production: A Review.
    Venkatesh YK; Ravikumar MP; Ramu S; Ravikumar CH; Mohan S; Geetha Balakrishna R
    Chem Rec; 2023 Dec; 23(12):e202300277. PubMed ID: 37815192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review.
    Khan A; Alamry KA
    Carbohydr Res; 2021 Aug; 506():108368. PubMed ID: 34111686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review.
    Mandari V; Devarai SK
    Bioenergy Res; 2022; 15(2):935-961. PubMed ID: 34603592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on heavy metal biosorption utilizing modified chitosan.
    Shankar S; Joshi S; Srivastava RK
    Environ Monit Assess; 2023 Oct; 195(11):1350. PubMed ID: 37861930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning chitosan's chemical structure for enhanced biological functions.
    Aghbashlo M; Amiri H; Moosavi Basri SM; Rastegari H; Lam SS; Pan J; Gupta VK; Tabatabaei M
    Trends Biotechnol; 2023 Jun; 41(6):785-797. PubMed ID: 36535818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized chitosan polymerized with cyclodextrin decorated ionic liquid: Metal free and biocompatible catalyst for chemical transformations.
    Sadjadi S; Koohestani F
    Int J Biol Macromol; 2020 Mar; 147():399-407. PubMed ID: 31926926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan-derived hydrothermally carbonized materials and its applications: A review of recent literature.
    Ababneh H; Hameed BH
    Int J Biol Macromol; 2021 Sep; 186():314-327. PubMed ID: 34197858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.