These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38008804)

  • 61. Phosphate solubilizing rhizobacteria from an organic farm and their influence on the growth and yield of maize (Zea mays L.).
    Kaur G; Reddy MS
    J Gen Appl Microbiol; 2013; 59(4):295-303. PubMed ID: 24005179
    [TBL] [Abstract][Full Text] [Related]  

  • 62. After-effects of straw and straw-derived biochar application on crop growth, yield, and soil properties in wheat (Triticum aestivum L.) -maize (Zea mays L.) rotations: A four-year field experiment.
    Hu Y; Sun B; Wu S; Feng H; Gao M; Zhang B; Liu Y
    Sci Total Environ; 2021 Aug; 780():146560. PubMed ID: 33770594
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of Chemical Fertilization on the Impacts of Plant Growth-Promoting Rhizobacteria in Maize Crops.
    Nascimento FC; Kandasamy S; Lazarovits G; Rigobelo EC
    Curr Microbiol; 2020 Dec; 77(12):3878-3887. PubMed ID: 32965535
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity.
    Ullah S; Bano A
    Can J Microbiol; 2015 Apr; 61(4):307-13. PubMed ID: 25776270
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system.
    Adesemoye AO; Torbert HA; Kloepper JW
    Can J Microbiol; 2008 Oct; 54(10):876-86. PubMed ID: 18923557
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Acid phosphatase role in chickpea/maize intercropping.
    Li SM; Li L; Zhang FS; Tang C
    Ann Bot; 2004 Aug; 94(2):297-303. PubMed ID: 15238349
    [TBL] [Abstract][Full Text] [Related]  

  • 67.
    Qin Y; Duan G; Zhao Z; Tian H; Solaiman ZM
    Mycorrhiza; 2018 Nov; 28(8):787-793. PubMed ID: 29951862
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture.
    Timofeeva A; Galyamova M; Sedykh S
    Plants (Basel); 2022 Aug; 11(16):. PubMed ID: 36015422
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stereoisomers of Nonvolatile Acetylbutanediol Metabolites Produced by
    Wang A; Hua J; Wang Y; Zhang G; Luo S
    J Agric Food Chem; 2020 Jun; 68(23):6308-6315. PubMed ID: 32396372
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Insights Into Manganese Solubilizing
    Ijaz A; Mumtaz MZ; Wang X; Ahmad M; Saqib M; Maqbool H; Zaheer A; Wang W; Mustafa A
    Front Plant Sci; 2021; 12():719504. PubMed ID: 34795682
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Synergistic effects of organic fertilizer coupled with phosphate-solubilizing and nitrogen-fixing bacteria on nutrient characteristics of yellow-brown soil under carbon deficiency].
    Wang ZK; Xu ZH; Chen ZY; Fu XX
    Ying Yong Sheng Tai Xue Bao; 2020 Oct; 31(10):3413-3423. PubMed ID: 33314831
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone.
    Li Z; Xu C; Li K; Yan S; Qu X; Zhang J
    BMC Plant Biol; 2012 Jun; 12():89. PubMed ID: 22704465
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Features of Bacillus subtilis IMB B-7023 and its streptomycin-resistant strain].
    Roĭ AA; Iatsenko IP; Gordienko AS; Kurdish IK
    Prikl Biokhim Mikrobiol; 2011; 47(1):23-7. PubMed ID: 21442916
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The influence of microbial-based inoculants on N
    Calvo P; Watts DB; Kloepper JW; Torbert HA
    Can J Microbiol; 2016 Dec; 62(12):1041-1056. PubMed ID: 27829287
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phosphate fertilization affects rhizosphere microbiome of maize and sorghum genotypes.
    Campolino ML; de Paula Lana UG; Gomes EA; Coelho AM; de Sousa SM
    Braz J Microbiol; 2022 Sep; 53(3):1371-1383. PubMed ID: 35391636
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Potential of Novel Sequence Type of
    Tagele SB; Kim SW; Lee HG; Lee YS
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813526
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of potassium-solubulizing and photosynthetic bacteria on tolerance to salt stress in maize.
    Feng K; Cai Z; Ding T; Yan H; Liu X; Zhang Z
    J Appl Microbiol; 2019 May; 126(5):1530-1540. PubMed ID: 30758905
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Occurrence, fate, and transport of potentially toxic metals (PTMs) in an alkaline rhizosphere soil-plant (Maize, Zea mays L.) system: the role of Bacillus subtilis.
    Li X; Cai Y; Liu D; Ai Y; Zhang M; Gao Y; Zhang Y; Zhang X; Yan X; Liu B; Yu H; Mielke HW
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5564-5576. PubMed ID: 30612356
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Inoculation of phosphate-solubilizing bacteria (Bacillus) regulates microbial interaction to improve phosphorus fractions mobilization during kitchen waste composting.
    Zhang X; Zhan Y; Zhang H; Wang R; Tao X; Zhang L; Zuo Y; Zhang L; Wei Y; Li J
    Bioresour Technol; 2021 Nov; 340():125714. PubMed ID: 34371333
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Potential of growth-promoting bacteria in maize (Zea mays L.) varies according to soil moisture.
    Araújo VLVP; Fracetto GGM; Silva AMM; Pereira APA; Freitas CCG; Barros FMDR; Santana MC; Feiler HP; Matteoli FP; Fracetto FJC; Cardoso EJBN
    Microbiol Res; 2023 Jun; 271():127352. PubMed ID: 36907073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.