These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 38008813)
21. Investigation of magnetically driven passage of magnetic nanoparticles through eye tissues for magnetic drug targeting. Zahn D; Klein K; Radon P; Berkov D; Erokhin S; Nagel E; Eichhorn M; Wiekhorst F; Dutz S Nanotechnology; 2020 Dec; 31(49):495101. PubMed ID: 32946423 [TBL] [Abstract][Full Text] [Related]
22. Development and Characterization of Magnetite/Poly(butylcyanoacrylate) Nanoparticles for Magnetic Targeted Delivery of Cancer Drugs. López-Viota M; El-Hammadi MM; Cabeza L; Prados J; Melguizo C; Ruiz Martinez MA; Arias JL; Delgado ÁV AAPS PharmSciTech; 2017 Nov; 18(8):3042-3052. PubMed ID: 28508129 [TBL] [Abstract][Full Text] [Related]
23. Progress in targeting tumor cells by using drug-magnetic nanoparticles conjugate. Nowicka AM; Kowalczyk A; Jarzebinska A; Donten M; Krysinski P; Stojek Z; Augustin E; Mazerska Z Biomacromolecules; 2013 Mar; 14(3):828-33. PubMed ID: 23327587 [TBL] [Abstract][Full Text] [Related]
24. Minimally required heat doses for various tumour sizes in induction heating cancer therapy determined by computer simulation using experimental data. Yamada K; Oda T; Hashimoto S; Enomoto T; Ohkohchi N; Ikeda H; Yanagihara H; Kishimoto M; Kita E; Tasaki A; Satake M; Ikehata Y; Nagae H; Nagano I; Takagi T; Kanamori T Int J Hyperthermia; 2010; 26(5):465-74. PubMed ID: 20377361 [TBL] [Abstract][Full Text] [Related]
25. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics? Datta NR; Krishnan S; Speiser DE; Neufeld E; Kuster N; Bodis S; Hofmann H Cancer Treat Rev; 2016 Nov; 50():217-227. PubMed ID: 27756009 [TBL] [Abstract][Full Text] [Related]
26. Establishment of a biophysical model to optimize endoscopic targeting of magnetic nanoparticles for cancer treatment. Roeth AA; Slabu I; Baumann M; Alizai PH; Schmeding M; Guentherodt G; Schmitz-Rode T; Neumann UP Int J Nanomedicine; 2017; 12():5933-5940. PubMed ID: 28860758 [TBL] [Abstract][Full Text] [Related]
27. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Mashhadi Malekzadeh A; Ramazani A; Tabatabaei Rezaei SJ; Niknejad H J Colloid Interface Sci; 2017 Mar; 490():64-73. PubMed ID: 27870961 [TBL] [Abstract][Full Text] [Related]
28. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Kempe M; Kempe H; Snowball I; Wallén R; Arza CR; Götberg M; Olsson T Biomaterials; 2010 Dec; 31(36):9499-510. PubMed ID: 20732712 [TBL] [Abstract][Full Text] [Related]
29. Computational Modelling of Magnetic Nanoparticle Properties and In Vivo Responses. Winkler DA Curr Med Chem; 2017; 24(5):483-496. PubMed ID: 27758713 [TBL] [Abstract][Full Text] [Related]
30. Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. Elbialy NS; Fathy MM; Khalil WM Int J Pharm; 2015 Jul; 490(1-2):190-9. PubMed ID: 25997662 [TBL] [Abstract][Full Text] [Related]
31. Computational Assessment of Magnetic Nanoparticle Targeting Efficiency in a Simplified Circle of Willis Arterial Model. Hewlin RL; Tindall JM Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768867 [TBL] [Abstract][Full Text] [Related]
32. Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Gunduz U; Keskin T; Tansık G; Mutlu P; Yalcin S; Unsoy G; Yakar A; Khodadust R; Gunduz G Biomed Pharmacother; 2014 Jul; 68(6):729-36. PubMed ID: 25194441 [TBL] [Abstract][Full Text] [Related]
33. Numerical Simulation of Magnetic Drug Targeting to the Stenosis Vessel Using Fe Badfar H; Yekani Motlagh S; Sharifi A Cardiovasc Eng Technol; 2020 Apr; 11(2):162-175. PubMed ID: 31853904 [TBL] [Abstract][Full Text] [Related]
34. Treatment Efficiency of Free and Nanoparticle-Loaded Mitoxantrone for Magnetic Drug Targeting in Multicellular Tumor Spheroids. Hornung A; Poettler M; Friedrich RP; Zaloga J; Unterweger H; Lyer S; Nowak J; Odenbach S; Alexiou C; Janko C Molecules; 2015 Sep; 20(10):18016-30. PubMed ID: 26437393 [TBL] [Abstract][Full Text] [Related]
35. Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. Silva AK; Luciani N; Gazeau F; Aubertin K; Bonneau S; Chauvierre C; Letourneur D; Wilhelm C Nanomedicine; 2015 Apr; 11(3):645-55. PubMed ID: 25596340 [TBL] [Abstract][Full Text] [Related]
36. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Natesan S; Ponnusamy C; Sugumaran A; Chelladurai S; Shanmugam Palaniappan S; Palanichamy R Int J Biol Macromol; 2017 Nov; 104(Pt B):1853-1859. PubMed ID: 28359890 [TBL] [Abstract][Full Text] [Related]
37. Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays. Barnsley LC; Carugo D; Aron M; Stride E Phys Med Biol; 2017 Mar; 62(6):2333-2360. PubMed ID: 28141578 [TBL] [Abstract][Full Text] [Related]
38. Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer. Grifantini R; Taranta M; Gherardini L; Naldi I; Parri M; Grandi A; Giannetti A; Tombelli S; Lucarini G; Ricotti L; Campagnoli S; De Camilli E; Pelosi G; Baldini F; Menciassi A; Viale G; Pileri P; Cinti C J Control Release; 2018 Jun; 280():76-86. PubMed ID: 29733876 [TBL] [Abstract][Full Text] [Related]
39. Hyaluronic acid-modified mesoporous silica-coated superparamagnetic Fe Fang Z; Li X; Xu Z; Du F; Wang W; Shi R; Gao D Int J Nanomedicine; 2019; 14():5785-5797. PubMed ID: 31440047 [No Abstract] [Full Text] [Related]
40. Superparamagnetic reconstituted high-density lipoprotein nanocarriers for magnetically guided drug delivery. Sabnis S; Sabnis NA; Raut S; Lacko AG Int J Nanomedicine; 2017; 12():1453-1464. PubMed ID: 28260891 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]