These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 38008813)
41. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Gogoi M; Jaiswal MK; Sarma HD; Bahadur D; Banerjee R Integr Biol (Camb); 2017 Jun; 9(6):555-565. PubMed ID: 28513646 [TBL] [Abstract][Full Text] [Related]
42. Sequential targeting dual-responsive magnetic nanoparticle for improved therapy of lung metastatic breast cancer. Shi S; Cao M; Li Y; Zhou L; Zhang S; Wang X; Xin J; Li W J Drug Target; 2023 Jul; 31(6):655-669. PubMed ID: 37235535 [TBL] [Abstract][Full Text] [Related]
43. Magnetic Nanoparticles for the Delivery of Dapagliflozin to Hypoxic Tumors: Physicochemical Characterization and Cell Studies. Angelopoulou A; Voulgari E; Kolokithas-Ntoukas A; Bakandritsos A; Avgoustakis K AAPS PharmSciTech; 2018 Feb; 19(2):621-633. PubMed ID: 28924948 [TBL] [Abstract][Full Text] [Related]
44. Numerical simulation of superparamagnetic nanoparticle motion in blood vessels for magnetic drug delivery. Lee M; Shelke A; Singh S; Fan J; Zaleski P; Afkhami S Phys Rev E; 2022 Jul; 106(1-2):015104. PubMed ID: 35974570 [TBL] [Abstract][Full Text] [Related]
45. In Vitro and In Vivo Delivery of Magnetic Nanoparticle Hyperthermia using a Custom-Built Delivery System. Duval KEA; Petryk JD; Hoopes PJ J Vis Exp; 2020 Jul; (161):. PubMed ID: 32716383 [TBL] [Abstract][Full Text] [Related]
46. Optimal Magnetic Field for Crossing Super-Para-Magnetic Nanoparticles through the Brain Blood Barrier: A Computational Approach. Pedram MZ; Shamloo A; Alasty A; Ghafar-Zadeh E Biosensors (Basel); 2016 Jun; 6(2):25. PubMed ID: 27314396 [TBL] [Abstract][Full Text] [Related]
47. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Baeza A; Colilla M; Vallet-Regí M Expert Opin Drug Deliv; 2015 Feb; 12(2):319-37. PubMed ID: 25421898 [TBL] [Abstract][Full Text] [Related]
48. Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines. Yalçin S; Erkan M; Ünsoy G; Parsian M; Kleeff J; Gündüz U Biomed Pharmacother; 2014 Jul; 68(6):737-43. PubMed ID: 25108345 [TBL] [Abstract][Full Text] [Related]
49. Improved magnetic drug targeting with maximized magnetic forces and limited particle spreading. Van Durme R; Crevecoeur G; Dupré L; Coene A Med Phys; 2023 Mar; 50(3):1715-1727. PubMed ID: 36542430 [TBL] [Abstract][Full Text] [Related]
50. Magnetic drug targeting--biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. Alexiou C; Jurgons R; Schmid RJ; Bergemann C; Henke J; Erhardt W; Huenges E; Parak F J Drug Target; 2003 Apr; 11(3):139-49. PubMed ID: 13129824 [TBL] [Abstract][Full Text] [Related]
51. Chemoradiotherapeutic Magnetic Nanoparticles for Targeted Treatment of Nonsmall Cell Lung Cancer. Munaweera I; Shi Y; Koneru B; Saez R; Aliev A; Di Pasqua AJ; Balkus KJ Mol Pharm; 2015 Oct; 12(10):3588-96. PubMed ID: 26325115 [TBL] [Abstract][Full Text] [Related]
52. Modelling the effect of SPION size in a stent assisted magnetic drug targeting system with interparticle interactions. Mardinoglu A; Cregg PJ ScientificWorldJournal; 2015; 2015():618658. PubMed ID: 25815370 [TBL] [Abstract][Full Text] [Related]
53. A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field. Tehrani MD; Yoon JH; Kim MO; Yoon J IEEE Trans Biomed Eng; 2015 Jan; 62(1):303-13. PubMed ID: 25163053 [TBL] [Abstract][Full Text] [Related]
54. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Wu VM; Huynh E; Tang S; Uskoković V Acta Biomater; 2019 Apr; 88():422-447. PubMed ID: 30711662 [TBL] [Abstract][Full Text] [Related]
55. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Mikhaylov G; Mikac U; Magaeva AA; Itin VI; Naiden EP; Psakhye I; Babes L; Reinheckel T; Peters C; Zeiser R; Bogyo M; Turk V; Psakhye SG; Turk B; Vasiljeva O Nat Nanotechnol; 2011 Aug; 6(9):594-602. PubMed ID: 21822252 [TBL] [Abstract][Full Text] [Related]
56. Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns. Lei W; Lu X; Wang M Adv Colloid Interface Sci; 2023 Jan; 311():102826. PubMed ID: 36528919 [TBL] [Abstract][Full Text] [Related]
57. Transport of nanoparticles in magnetic targeting: Comparison of magnetic, diffusive and convective forces and fluxes in the microvasculature, through vascular pores and across the interstitium. Kolitsi LI; Yiantsios SG Microvasc Res; 2020 Jul; 130():104007. PubMed ID: 32305349 [TBL] [Abstract][Full Text] [Related]
58. Recent advancements in brain tumor targeting using magnetic nanoparticles. Gandhi H; Sharma AK; Mahant S; Kapoor DN Ther Deliv; 2020 Feb; 11(2):97-112. PubMed ID: 31914859 [TBL] [Abstract][Full Text] [Related]
59. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer? Carrião MS; Bakuzis AF Nanoscale; 2016 Apr; 8(15):8363-77. PubMed ID: 27046437 [TBL] [Abstract][Full Text] [Related]
60. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Liu JF; Jang B; Issadore D; Tsourkas A Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Nov; 11(6):e1571. PubMed ID: 31241251 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]