These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3800889)

  • 21. Elongation of fatty acids by microsomal fractions from the brain of the developing rat.
    Brophy PJ; Vance DE
    Biochem J; 1975 Dec; 152(3):495-501. PubMed ID: 818998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acetate is the preferred substrate for long-chain fatty acid synthesis in isolated spinach chloroplasts.
    Roughan PG; Holland R; Slack CR
    Biochem J; 1979 Dec; 184(3):565-9. PubMed ID: 540048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the control of long-chain-fatty acid synthesis in isolated intact spinach (Spinacia oleracea) chloroplasts.
    Roughan PG; Holland R; Slack CR
    Biochem J; 1979 Nov; 184(2):193-202. PubMed ID: 534525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High rates of [1-14C]acetate incorporation into the lipid of isolated spinach chloroplasts.
    Roughan PG; Slack CR; Holland R
    Biochem J; 1976 Sep; 158(3):593-601. PubMed ID: 985452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of exogenous sugars on the control of flux by adenosine 5'-diphosphoglucose pyrophosphorylase in potato tuber discs.
    Sweetlove LJ; Tomlinson KL; Hill SA
    Planta; 2002 Mar; 214(5):741-50. PubMed ID: 11882943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatty acid synthesis in rat adipose tissue. Tracer concentration effects in vitro.
    Duncombe WG
    Biochem J; 1968 Jan; 106(1):179-83. PubMed ID: 5721454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis.
    Wenning L; Ejsing CS; David F; Sprenger RR; Nielsen J; Siewers V
    Microb Cell Fact; 2019 Mar; 18(1):49. PubMed ID: 30857535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum).
    Valiñas MA; Lanteri ML; ten Have A; Andreu AB
    J Agric Food Chem; 2015 May; 63(19):4902-13. PubMed ID: 25921651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in the location of polyphenol oxidase in potato (Solanum tuberosum L.) tuber during cell death in response to impact injury: comparison with wound tissue.
    Partington JC; Smith C; Bolwell GP
    Planta; 1999 Jan; 207(3):449-60. PubMed ID: 9951737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partial depolymerization of genetically modified potato tuber periderm reveals intermolecular linkages in suberin polyester.
    Graça J; Cabral V; Santos S; Lamosa P; Serra O; Molinas M; Schreiber L; Kauder F; Franke R
    Phytochemistry; 2015 Sep; 117():209-219. PubMed ID: 26093489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A metabolomics study of cultivated potato (Solanum tuberosum) groups Andigena, Phureja, Stenotomum, and tuberosum using gas chromatography-mass spectrometry.
    Dobson G; Shepherd T; Verrall SR; Griffiths WD; Ramsay G; McNicol JW; Davies HV; Stewart D
    J Agric Food Chem; 2010 Jan; 58(2):1214-23. PubMed ID: 20028086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased levels of policosanol and very long-chain fatty acids in potato pulp fermented with Rhizopus oryzae.
    Musa R; Yunoki K; Kinoshita M; Oda Y; Ohnishi M
    Biosci Biotechnol Biochem; 2004 Nov; 68(11):2401-4. PubMed ID: 15564684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cuticular waxes from potato (Solanum tuberosum) leaves.
    Szafranek BM; Synak EE
    Phytochemistry; 2006 Jan; 67(1):80-90. PubMed ID: 16310230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zebra chip disease decreases tuber (Solanum tuberosum L.) protein content by attenuating protease inhibitor levels and increasing protease activities.
    Kumar GN; Knowles LO; Knowles NR
    Planta; 2015 Nov; 242(5):1153-66. PubMed ID: 26092706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the '16:3' plant Arabidopsis thaliana.
    Browse J; Warwick N; Somerville CR; Slack CR
    Biochem J; 1986 Apr; 235(1):25-31. PubMed ID: 3741384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatty acyl-CoA elongation in Blatella germanica integumental microsomes.
    Juárez MP
    Arch Insect Biochem Physiol; 2004 Aug; 56(4):170-8. PubMed ID: 15274178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporation of 14C acetate into the phospholipids and fatty acids of rabbit lens in organ culture.
    Albers-Jackson B; Farris BD; Reddan JR; Swindell RT
    Curr Eye Res; 1982-1983; 2(8):499-505. PubMed ID: 7184702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of lipogenesis. Stimulation of fatty acid synthesis in vivo and in vitro in the liver of the newly hatched chick.
    Goodridge AG
    Biochem J; 1970 Jun; 118(2):259-63. PubMed ID: 5484672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potato phosphorylase catalyzed synthesis of amylose-lipid complexes.
    Gelders GG; Goesaert H; Delcour JA
    Biomacromolecules; 2005; 6(5):2622-9. PubMed ID: 16153100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Putrescine N-methyltransferase in Solanum tuberosum L., a calystegine-forming plant.
    Stenzel O; Teuber M; Dräger B
    Planta; 2006 Jan; 223(2):200-12. PubMed ID: 16088399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.