These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38009074)

  • 1. A Raman spectroscopic and
    Sasidharanpillai S; Cox JS; Pye CC; Tremaine PR
    Dalton Trans; 2023 Dec; 52(48):18391-18406. PubMed ID: 38009074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triborate Formation Constants and Polyborate Speciation under Hydrothermal Conditions by Raman Spectroscopy using a Titanium/Sapphire Flow Cell.
    Sasidharanpillai S; Arcis H; Trevani L; Tremaine PR
    J Phys Chem B; 2019 Jun; 123(24):5147-5159. PubMed ID: 31181928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman and ab initio investigation of aqueous Cu(I) chloride complexes from 25 to 80 °C.
    Applegarth LM; Corbeil CR; Mercer DJ; Pye CC; Tremaine PR
    J Phys Chem B; 2014 Jan; 118(1):204-14. PubMed ID: 24256415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration of the calcium(II) ion in an aqueous solution of common anions (ClO4-, Cl-, Br-, and NO3-).
    Rudolph WW; Irmer G
    Dalton Trans; 2013 Mar; 42(11):3919-35. PubMed ID: 23334569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The borate mineral jeremejevite Al6(BO3)5(F,OH)3--a vibrational spectroscopic study.
    Frost RL; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():831-6. PubMed ID: 22925911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Third dissociation constant of phosphoric acid in H
    Conrad J; Tremaine PR
    Phys Chem Chem Phys; 2021 May; 23(17):10670-10685. PubMed ID: 33908441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH.
    Walrafen GE; Douglas RT
    J Chem Phys; 2006 Mar; 124(11):114504. PubMed ID: 16555898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Uranyl Sulfate Complexation under Hydrothermal Conditions by Quantitative Raman Spectroscopy and Density Functional Theory.
    Alcorn CD; Cox JS; Applegarth LMSGA; Tremaine PR
    J Phys Chem B; 2019 Aug; 123(34):7385-7409. PubMed ID: 31369268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Raman method for aqueous solutions: xi-function dispersion evidence for strong F(-)-water H-bonds in aqueous CsF and KF solutions.
    Walrafen GE
    J Chem Phys; 2005 Aug; 123(7):074506. PubMed ID: 16229600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman study of aluminum speciation in simulated alkaline nuclear waste.
    Johnston CT; Agnew SF; Schoonover JR; Kenney JW; Page B; Osborn J; Corbin R
    Environ Sci Technol; 2002 Jun; 36(11):2451-8. PubMed ID: 12075803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc(II) hydration in aqueous solution. A Raman spectroscopic investigation and an
    W Rudolph W; C Pye C
    Phys Chem Chem Phys; 1999 Jan; 1(19):4583-4593. PubMed ID: 36471587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second Dissociation Constant of Carbonic Acid in H
    Conrad J; Sasidharanpillai S; Tremaine PR
    J Phys Chem B; 2020 Apr; 124(13):2600-2617. PubMed ID: 32195593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous sodium hydroxide (NaOH) solutions at high pressure and temperature: insights from in situ Raman spectroscopy and ab initio molecular dynamics simulations.
    Stefanski J; Schmidt C; Jahn S
    Phys Chem Chem Phys; 2018 Aug; 20(33):21629-21639. PubMed ID: 30101256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman and infrared spectroscopic investigations on aqueous alkali metal phosphate solutions and density functional theory calculations of phosphate-water clusters.
    Rudolph WW; Irmer G
    Appl Spectrosc; 2007 Dec; 61(12):1312-27. PubMed ID: 18198023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational spectroscopy of the borate mineral henmilite Ca₂Cu[B(OH)₄]₂(OH)₄.
    Frost RL; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():356-60. PubMed ID: 23261634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of an ion-pair molecule with a single NH(+)...Cl(-) hydrogen bond: Raman spectra of 1,1,3,3-tetramethylguanidinium chloride in the solid state, in solution, and in the vapor phase.
    Berg RW; Riisager A; Fehrmann R
    J Phys Chem A; 2008 Sep; 112(37):8585-92. PubMed ID: 18714951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopic study of the mineral arsenogorceixite BaAl₃AsO₃(OH)(AsO₄,PO₄)(OH,F)₆.
    Frost RL; Xi Y; Pogson RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 91():301-6. PubMed ID: 22387680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The limiting conductivity of the borate ion and its ion-pair formation constants with sodium and potassium under hydrothermal conditions.
    Arcis H; Ferguson JP; Zimmerman GH; Tremaine PR
    Phys Chem Chem Phys; 2016 Aug; 18(34):24081-94. PubMed ID: 27526199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration and Ion Pair Formation in Aqueous Lu
    Rudolph W; Irmer G
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30544572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman spectroscopy of the borate mineral ameghinite NaB3O3(OH)4.
    Frost RL; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():89-94. PubMed ID: 22659276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.