These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 38009092)
1. SGC-CLK-1: A chemical probe for the Cdc2-like kinases CLK1, CLK2, and CLK4. Tiek D; Wells CI; Schröder M; Song X; Alamillo-Ferrer C; Goenka A; Iglesia R; Lu M; Hu B; Kwarcinski F; Sintha P; de Silva C; Hossain MA; Picado A; Zuercher W; Zutshi R; Knapp S; Riggins RB; Cheng SY; Drewry DH Curr Res Chem Biol; 2023; 3():. PubMed ID: 38009092 [TBL] [Abstract][Full Text] [Related]
2. Structural Basis for the Selective Inhibition of Cdc2-Like Kinases by CX-4945. Lee JY; Yun JS; Kim WK; Chun HS; Jin H; Cho S; Chang JH Biomed Res Int; 2019; 2019():6125068. PubMed ID: 31531359 [TBL] [Abstract][Full Text] [Related]
3. Human CDC2-like kinase 1 (CLK1): a novel target for Alzheimer's disease. Jain P; Karthikeyan C; Moorthy NS; Waiker DK; Jain AK; Trivedi P Curr Drug Targets; 2014 May; 15(5):539-50. PubMed ID: 24568585 [TBL] [Abstract][Full Text] [Related]
4. Molecular structures of cdc2-like kinases in complex with a new inhibitor chemotype. Walter A; Chaikuad A; Helmer R; Loaëc N; Preu L; Ott I; Knapp S; Meijer L; Kunick C PLoS One; 2018; 13(5):e0196761. PubMed ID: 29723265 [TBL] [Abstract][Full Text] [Related]
5. The cellular localization of the murine serine/arginine-rich protein kinase CLK2 is regulated by serine 141 autophosphorylation. Nayler O; Schnorrer F; Stamm S; Ullrich A J Biol Chem; 1998 Dec; 273(51):34341-8. PubMed ID: 9852100 [TBL] [Abstract][Full Text] [Related]
6. The CLK family kinases, CLK1 and CLK2, phosphorylate and activate the tyrosine phosphatase, PTP-1B. Moeslein FM; Myers MP; Landreth GE J Biol Chem; 1999 Sep; 274(38):26697-704. PubMed ID: 10480872 [TBL] [Abstract][Full Text] [Related]
7. Small-molecule pyrimidine inhibitors of the cdc2-like (Clk) and dual specificity tyrosine phosphorylation-regulated (Dyrk) kinases: development of chemical probe ML315. Coombs TC; Tanega C; Shen M; Wang JL; Auld DS; Gerritz SW; Schoenen FJ; Thomas CJ; Aubé J Bioorg Med Chem Lett; 2013 Jun; 23(12):3654-61. PubMed ID: 23642479 [TBL] [Abstract][Full Text] [Related]
8. Opposing roles of CLK SR kinases in controlling HIV-1 gene expression and latency. Dahal S; Clayton K; Been T; Fernet-Brochu R; Ocando AV; Balachandran A; Poirier M; Maldonado RK; Shkreta L; Boligan KF; Guvenc F; Rahman F; Branch D; Bell B; Chabot B; Gray-Owen SD; Parent LJ; Cochrane A Retrovirology; 2022 Aug; 19(1):18. PubMed ID: 35986377 [TBL] [Abstract][Full Text] [Related]
9. Discovery of DB18, a potent inhibitor of CLK kinases with a high selectivity against DYRK1A kinase. Brahmaiah D; Kanaka Durga Bhavani A; Aparna P; Sampath Kumar N; Solhi H; Le Guevel R; Baratte B; Ruchaud S; Bach S; Singh Jadav S; Raji Reddy C; Roisnel T; Mosset P; Levoin N; Grée R Bioorg Med Chem; 2021 Feb; 31():115962. PubMed ID: 33422908 [TBL] [Abstract][Full Text] [Related]
10. Computer-aided identification of novel protein targets of bisphenol A. Montes-Grajales D; Olivero-Verbel J Toxicol Lett; 2013 Oct; 222(3):312-20. PubMed ID: 23973438 [TBL] [Abstract][Full Text] [Related]
11. Akt2 regulation of Cdc2-like kinases (Clk/Sty), serine/arginine-rich (SR) protein phosphorylation, and insulin-induced alternative splicing of PKCbetaII messenger ribonucleic acid. Jiang K; Patel NA; Watson JE; Apostolatos H; Kleiman E; Hanson O; Hagiwara M; Cooper DR Endocrinology; 2009 May; 150(5):2087-97. PubMed ID: 19116344 [TBL] [Abstract][Full Text] [Related]
12. Development of Cdc2-like Kinase 2 Inhibitors: Achievements and Future Directions. Qin Z; Qin L; Feng X; Li Z; Bian J J Med Chem; 2021 Sep; 64(18):13191-13211. PubMed ID: 34519506 [TBL] [Abstract][Full Text] [Related]
13. Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy. Wong R; Balachandran A; Mao AY; Dobson W; Gray-Owen S; Cochrane A Retrovirology; 2011 Jun; 8():47. PubMed ID: 21682887 [TBL] [Abstract][Full Text] [Related]
14. Manipulation of alternative splicing by a newly developed inhibitor of Clks. Muraki M; Ohkawara B; Hosoya T; Onogi H; Koizumi J; Koizumi T; Sumi K; Yomoda J; Murray MV; Kimura H; Furuichi K; Shibuya H; Krainer AR; Suzuki M; Hagiwara M J Biol Chem; 2004 Jun; 279(23):24246-54. PubMed ID: 15010457 [TBL] [Abstract][Full Text] [Related]
15. Anti-tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC-dependent vulnerability. Iwai K; Yaguchi M; Nishimura K; Yamamoto Y; Tamura T; Nakata D; Dairiki R; Kawakita Y; Mizojiri R; Ito Y; Asano M; Maezaki H; Nakayama Y; Kaishima M; Hayashi K; Teratani M; Miyakawa S; Iwatani M; Miyamoto M; Klein MG; Lane W; Snell G; Tjhen R; He X; Pulukuri S; Nomura T EMBO Mol Med; 2018 Jun; 10(6):. PubMed ID: 29769258 [TBL] [Abstract][Full Text] [Related]
16. Hydroxybenzothiophene Ketones Are Efficient Pre-mRNA Splicing Modulators Due to Dual Inhibition of Dyrk1A and Clk1/4. Schmitt C; Miralinaghi P; Mariano M; Hartmann RW; Engel M ACS Med Chem Lett; 2014 Sep; 5(9):963-7. PubMed ID: 25221649 [TBL] [Abstract][Full Text] [Related]
17. Disordered protein interactions for an ordered cellular transition: Cdc2-like kinase 1 is transported to the nucleus via its Ser-Arg protein substrate. George A; Aubol BE; Fattet L; Adams JA J Biol Chem; 2019 Jun; 294(24):9631-9641. PubMed ID: 31064840 [TBL] [Abstract][Full Text] [Related]
18. Hypoxia leads to significant changes in alternative splicing and elevated expression of CLK splice factor kinases in PC3 prostate cancer cells. Bowler E; Porazinski S; Uzor S; Thibault P; Durand M; Lapointe E; Rouschop KMA; Hancock J; Wilson I; Ladomery M BMC Cancer; 2018 Apr; 18(1):355. PubMed ID: 29606096 [TBL] [Abstract][Full Text] [Related]
19. Kinase domain insertions define distinct roles of CLK kinases in SR protein phosphorylation. Bullock AN; Das S; Debreczeni JE; Rellos P; Fedorov O; Niesen FH; Guo K; Papagrigoriou E; Amos AL; Cho S; Turk BE; Ghosh G; Knapp S Structure; 2009 Mar; 17(3):352-62. PubMed ID: 19278650 [TBL] [Abstract][Full Text] [Related]