BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3800917)

  • 1. Chlortetracycline and the transmembrane potential of the inner membrane of plant mitochondria.
    Møller IM; Kay CJ; Palmer JM
    Biochem J; 1986 Aug; 237(3):765-71. PubMed ID: 3800917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A specific role for Ca2+ in the oxidation of exogenous NADH by Jerusalem-artichoke (Helianthus tuberosus) mitochondria.
    Møller IM; Johnston SP; Palmer JM
    Biochem J; 1981 Feb; 194(2):487-95. PubMed ID: 6796061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge screening by cations affects the conformation of the mitochondrial inner membrane. A study of exogenous MAD(P)H oxidation in plant mitochondria.
    Møller IM; Palmer JM
    Biochem J; 1981 Jun; 195(3):583-8. PubMed ID: 7316973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+-dependent depolarization of energized mitochondrial membrane potential by chlortetracycline (aureomycin).
    Pershadsingh HA; Martin AP; Vorbeck ML; Long JW; Stubbs EB
    J Biol Chem; 1982 Nov; 257(21):12481-4. PubMed ID: 6182140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activation of non-phosphorylating electron transport by adenine nucleotides in Jerusalem-artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R; Palmer JM
    Biochem J; 1975 Dec; 152(3):637-45. PubMed ID: 1227506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation.
    Dawson AG; Chappell JB
    Biochem J; 1978 Feb; 170(2):395-405. PubMed ID: 205211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation of exogenous NAD(P)H oxidation in spinach (Spinacia oleracea) leaf mitochondria by pH and cations.
    Edman K; Ericson I; Møller IM
    Biochem J; 1985 Dec; 232(2):471-7. PubMed ID: 3937519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.
    Palmer JM; Schwitzguébel JP; Møller IM
    Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of calcium ions and inhibitors on internal NAD(P)H dehydrogenases in plant mitochondria.
    Rasmusson AG; Møller IM
    Eur J Biochem; 1991 Dec; 202(2):617-23. PubMed ID: 1722151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of NADH oxidation by atractylate in Jerusalem artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R; Palmer JM
    FEBS Lett; 1978 May; 89(1):165-8. PubMed ID: 207566
    [No Abstract]   [Full Text] [Related]  

  • 12. The mechanism of lead-induced mitochondrial Ca2+ efflux.
    Chávez E; Jay D; Bravo C
    J Bioenerg Biomembr; 1987 Jun; 19(3):285-95. PubMed ID: 2887557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MMP+) and N-methyl-beta-carbolines?
    Krueger MJ; Tan AK; Ackrell BA; Singer TP
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):673-6. PubMed ID: 8489493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibition of plant mitochondrial respiration by the synthetic analog of ubiquinone, 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT).
    Cook ND; Cammack R
    Arch Biochem Biophys; 1985 Jul; 240(1):9-14. PubMed ID: 4015114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chlorophenols on isolated plant mitochondria activities: a QSAR study.
    Ravanel P; Taillandier G; Tissut M; Benoit-Guyod JL
    Ecotoxicol Environ Saf; 1985 Jun; 9(3):300-20. PubMed ID: 4006830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+ transport by digitonin-permeabilized Leishmania donovani. Effects of Ca2+, pentamidine and WR-6026 on mitochondrial membrane potential in situ.
    Vercesi AE; Docampo R
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):463-7. PubMed ID: 1376113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding and screening by cations and the effect on exogenous NAD(P)H oxidation in Neurospora crassa mitochondria.
    Møller IM; Schwitzguébel JP; Palmer JM
    Eur J Biochem; 1982 Mar; 123(1):81-8. PubMed ID: 6461553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlortetracycline-mediated continuous Ca2+ oscillations in mitochondria of digitonin-treated Tetrahymena pyriformis.
    Kim YV; Kudzina LYu ; Zinchenko VP; Evtodienko YV
    Eur J Biochem; 1985 Dec; 153(3):503-7. PubMed ID: 3935438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of transmembrane electrical potential during NADH oxidation via the external pathway and the fatty acid uncoupling effect after transient opening of the Ca2+-dependent cyclosporin A-sensitive pore in liver mitochondria.
    Bodrova ME; Dedukhova VI; Mokhova EN
    Biochemistry (Mosc); 2000 Apr; 65(4):477-84. PubMed ID: 10810187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence response in chlortetracycline-loaded neutrophils measures release of Ca2+ from intracellular membrane enclosed storage sites.
    Jacob J
    Biochim Biophys Acta; 1991 Feb; 1091(3):317-23. PubMed ID: 1900441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.