These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 38009333)
1. Tunnelling nanotube formation is driven by Eps8/IRSp53-dependent linear actin polymerization. Henderson JM; Ljubojevic N; Belian S; Chaze T; Castaneda D; Battistella A; Giai Gianetto Q; Matondo M; Descroix S; Bassereau P; Zurzolo C EMBO J; 2023 Dec; 42(24):e113761. PubMed ID: 38009333 [TBL] [Abstract][Full Text] [Related]
2. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes. Delage E; Cervantes DC; Pénard E; Schmitt C; Syan S; Disanza A; Scita G; Zurzolo C Sci Rep; 2016 Dec; 6():39632. PubMed ID: 28008977 [TBL] [Abstract][Full Text] [Related]
3. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions. Ljubojevic N; Henderson JM; Zurzolo C Trends Cell Biol; 2021 Feb; 31(2):130-142. PubMed ID: 33309107 [TBL] [Abstract][Full Text] [Related]
4. I-BAR domains, IRSp53 and filopodium formation. Ahmed S; Goh WI; Bu W Semin Cell Dev Biol; 2010 Jun; 21(4):350-6. PubMed ID: 19913105 [TBL] [Abstract][Full Text] [Related]
5. Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Disanza A; Mantoani S; Hertzog M; Gerboth S; Frittoli E; Steffen A; Berhoerster K; Kreienkamp HJ; Milanesi F; Di Fiore PP; Ciliberto A; Stradal TE; Scita G Nat Cell Biol; 2006 Dec; 8(12):1337-47. PubMed ID: 17115031 [TBL] [Abstract][Full Text] [Related]
6. Molecular Relay Stations in Membrane Nanotubes: IRSp53 Involved in Actin-Based Force Generation. Madarász T; Brunner B; Halász H; Telek E; Matkó J; Nyitrai M; Szabó-Meleg E Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685917 [TBL] [Abstract][Full Text] [Related]
7. The Eps8/IRSp53/VASP network differentially controls actin capping and bundling in filopodia formation. Vaggi F; Disanza A; Milanesi F; Di Fiore PP; Menna E; Matteoli M; Gov NS; Scita G; Ciliberto A PLoS Comput Biol; 2011 Jul; 7(7):e1002088. PubMed ID: 21814501 [TBL] [Abstract][Full Text] [Related]
8. The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics. Lim KB; Bu W; Goh WI; Koh E; Ong SH; Pawson T; Sudhaharan T; Ahmed S J Biol Chem; 2008 Jul; 283(29):20454-72. PubMed ID: 18448434 [TBL] [Abstract][Full Text] [Related]
9. Tumor microtubes connect pancreatic cancer cells in an Arp2/3 complex-dependent manner. Latario CJ; Schoenfeld LW; Howarth CL; Pickrell LE; Begum F; Fischer DA; Grbovic-Huezo O; Leach SD; Sanchez Y; Smith KD; Higgs HN Mol Biol Cell; 2020 Jun; 31(12):1259-1272. PubMed ID: 32267199 [TBL] [Abstract][Full Text] [Related]
10. Dynamin1 is a novel target for IRSp53 protein and works with mammalian enabled (Mena) protein and Eps8 to regulate filopodial dynamics. Chou AM; Sem KP; Wright GD; Sudhaharan T; Ahmed S J Biol Chem; 2014 Aug; 289(35):24383-96. PubMed ID: 25031323 [TBL] [Abstract][Full Text] [Related]
11. Cooperative assembly of filopodia by the formin FMNL2 and I-BAR domain protein IRTKS. Fox S; Tran A; Trinkle-Mulcahy L; Copeland JW J Biol Chem; 2022 Nov; 298(11):102512. PubMed ID: 36259517 [TBL] [Abstract][Full Text] [Related]
12. The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes. Osteikoetxea-Molnár A; Szabó-Meleg E; Tóth EA; Oszvald Á; Izsépi E; Kremlitzka M; Biri B; Nyitray L; Bozó T; Németh P; Kellermayer M; Nyitrai M; Matko J Cell Mol Life Sci; 2016 Dec; 73(23):4531-4545. PubMed ID: 27125884 [TBL] [Abstract][Full Text] [Related]
13. Regulation of actin cytoskeleton architecture by Eps8 and Abi1. Roffers-Agarwal J; Xanthos JB; Miller JR BMC Cell Biol; 2005 Oct; 6():36. PubMed ID: 16225669 [TBL] [Abstract][Full Text] [Related]
14. Extracellular vesicles containing the I-BAR protein IRSp53 are released from the cell plasma membrane in an Arp2/3 dependent manner. de Poret A; Dibsy R; Merida P; Trausch A; Inamdar K; Muriaux D Biol Cell; 2022 Oct; 114(10):259-275. PubMed ID: 35844059 [TBL] [Abstract][Full Text] [Related]
15. IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Funato Y; Terabayashi T; Suenaga N; Seiki M; Takenawa T; Miki H Cancer Res; 2004 Aug; 64(15):5237-44. PubMed ID: 15289329 [TBL] [Abstract][Full Text] [Related]
16. Arp2/3 complex is required for actin polymerization during platelet shape change. Li Z; Kim ES; Bearer EL Blood; 2002 Jun; 99(12):4466-74. PubMed ID: 12036877 [TBL] [Abstract][Full Text] [Related]
17. Detection and Quantification of Tunneling Nanotubes Using 3D Volume View Images. Valappil DK; Raghavan A; Nath S J Vis Exp; 2022 Aug; (186):. PubMed ID: 36121261 [TBL] [Abstract][Full Text] [Related]
18. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2. Abou-Kheir W; Isaac B; Yamaguchi H; Cox D J Cell Sci; 2008 Feb; 121(Pt 3):379-90. PubMed ID: 18198193 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of IRTKS, a novel IRSp53/MIM family actin regulator with distinct filament bundling properties. Millard TH; Dawson J; Machesky LM J Cell Sci; 2007 May; 120(Pt 9):1663-72. PubMed ID: 17430976 [TBL] [Abstract][Full Text] [Related]
20. IRSp53 coordinates AMPK and 14-3-3 signaling to regulate filopodia dynamics and directed cell migration. Kast DJ; Dominguez R Mol Biol Cell; 2019 May; 30(11):1285-1297. PubMed ID: 30893014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]