These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38009367)

  • 1. Comparison of quartz and sapphire optical chambers for infrared laser sealing of vascular tissues using a reciprocating, side-firing optical fiber: Simulations and experiments.
    Saeed WM; O'Brien PJ; Yoshino J; Restelli AR; Traynham AJ; Fried NM
    Lasers Surg Med; 2023 Dec; 55(10):886-899. PubMed ID: 38009367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous sealing and bisection of porcine renal blood vessels, ex vivo, using a continuous-wave, infrared diode laser at 1470 nm.
    Saeed WM; Yoshino JK; Traynham AJ; Fried NM
    Lasers Med Sci; 2024 Jun; 39(1):161. PubMed ID: 38907065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of fiber-optic linear beam shaping designs for laparoscopic laser sealing of vascular tissues.
    Giglio NC; Grose HM; Fried NM
    Opt Eng; 2022 Feb; 61(2):. PubMed ID: 36711441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocating Side-Firing Fiber for Laser Sealing of Blood Vessels.
    Giglio NC; Grose HM; Fried NM
    Proc SPIE Int Soc Opt Eng; 2022; 11936():. PubMed ID: 35965612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Coherence Tomography Feedback System for Infrared Laser Sealing of Blood Vessels.
    Giglio NC; Grose HM; Fried NM
    Proc SPIE Int Soc Opt Eng; 2022; 11948():. PubMed ID: 35950053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid sealing of porcine renal blood vessels, ex vivo, using a high power, 1470-nm laser, and laparoscopic prototype.
    Hardy LA; Hutchens TC; Larson ER; Gonzalez DA; Chang CH; Nau WH; Fried NM
    J Biomed Opt; 2017 May; 22(5):58002. PubMed ID: 28550708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Optical Linear Beam Shaping Designs for use in Laparoscopic Laser Sealing of Vascular Tissues
    Hutchens TC; Giglio NC; Cilip CM; Rosenbury SG; Hardy LA; Kerr DE; Nau WH; Fried NM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5049-5052. PubMed ID: 33019121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared laser sealing of porcine vascular tissues using a 1,470 nm diode laser: Preliminary in vivo studies.
    Cilip CM; Kerr D; Latimer CA; Rosenbury SB; Giglio NC; Hutchens TC; Nau WH; Fried NM
    Lasers Surg Med; 2017 Apr; 49(4):366-371. PubMed ID: 27785787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser.
    Giglio NC; Hutchens TC; Perkins WC; Latimer C; Ward A; Nau WH; Fried NM
    J Biomed Opt; 2014 Mar; 19(3):38002. PubMed ID: 24658792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nondestructive optical feedback systems for use during infrared laser sealing of blood vessels.
    Giglio NC; Fried NM
    Lasers Surg Med; 2022 Aug; 54(6):875-882. PubMed ID: 35391495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time, Nondestructive Optical Feedback Systems for Infrared Laser Sealing of Blood Vessels.
    Giglio NC; Fried NM
    Proc SPIE Int Soc Opt Eng; 2022; 11936():. PubMed ID: 35949201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Real-Time Fluorescence Feedback System for Infrared Laser Sealing of Blood Vessels.
    Saeed WM; Fried NM
    IEEE J Sel Top Quantum Electron; 2023; 29(4 Biophotonics):. PubMed ID: 36466144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a Laparoscopic Ferromagnetic Technology-based Vessel Sealing Device and Comparative Study to Ultrasonic and Bipolar Laparoscopic Devices.
    Chen J; Jensen CR; Manwaring PK; Glasgow RE
    Surg Laparosc Endosc Percutan Tech; 2017 Apr; 27(2):e12-e17. PubMed ID: 28234706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sealing and Bisection of Blood Vessels using a 1470 nm Laser: Optical, Thermal, and Tissue Damage Simulations.
    Giglio NC; Fried NM
    Proc SPIE Int Soc Opt Eng; 2021 Mar; 11621():. PubMed ID: 34305258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Simulations for Infrared Laser Sealing and Cutting of Blood Vessels.
    Giglio NC; Fried NM
    IEEE J Sel Top Quantum Electron; 2021; 27(4):1-8. PubMed ID: 33746498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies.
    Cilip CM; Rosenbury SB; Giglio N; Hutchens TC; Schweinsberger GR; Kerr D; Latimer C; Nau WH; Fried NM
    J Biomed Opt; 2013 May; 18(5):58001. PubMed ID: 23640080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of erbium: YAG laser radiation.
    Polletto TJ; Ngo AK; Tchapyjnikov A; Levin K; Tran D; Fried NM
    Lasers Surg Med; 2006 Sep; 38(8):787-91. PubMed ID: 16988959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy output reduction and surface alteration of quartz and sapphire tips following Er:YAG laser contact irradiation for tooth enamel ablation.
    Eguro T; Aoki A; Maeda T; Takasaki AA; Hasegawa M; Ogawa M; Suzuki T; Yonemoto K; Ishikawa I; Izumi Y; Katsuumi I
    Lasers Surg Med; 2009 Oct; 41(8):595-604. PubMed ID: 19780189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perpendicular blood vessel seals are stronger than those made at an angle.
    Voegele AC; Korvick DL; Gutierrez M; Clymer JW; Amaral JF
    J Laparoendosc Adv Surg Tech A; 2013 Aug; 23(8):669-72. PubMed ID: 23755852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of fluoride and sapphire optical fibers for Er: YAG laser lithotripsy.
    Qiu J; Teichman J; Wang T; Elmaanaoui B; Gamez D; Milner TE
    J Biophotonics; 2010 Jun; 3(5-6):277-83. PubMed ID: 20414904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.