These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38009523)
1. Phosphorous-Based Heterostructure for the Effective Catalysis of Polysulfide Reactions with Phase Changes in High-Sulfur-Loading Lithium-Sulfur Batteries. Zhao Y; Zhang H; Ye H; Zhao D; Lee JY; Huang L Small Methods; 2024 Mar; 8(3):e2300610. PubMed ID: 38009523 [TBL] [Abstract][Full Text] [Related]
2. Promoting the Transformation of Li Yang X; Gao X; Sun Q; Jand SP; Yu Y; Zhao Y; Li X; Adair K; Kuo LY; Rohrer J; Liang J; Lin X; Banis MN; Hu Y; Zhang H; Li X; Li R; Zhang H; Kaghazchi P; Sham TK; Sun X Adv Mater; 2019 Jun; 31(25):e1901220. PubMed ID: 31062911 [TBL] [Abstract][Full Text] [Related]
3. Self-Assembled Macrocyclic Copper Complex Enables Homogeneous Catalysis for High-Loading Lithium-Sulfur Batteries. Yu Z; Huang X; Zheng M; Zhang SQ; Yang Y; Lu J Adv Mater; 2023 Jun; 35(26):e2300861. PubMed ID: 36990963 [TBL] [Abstract][Full Text] [Related]
4. Manipulating Redox Kinetics of Sulfur Species Using Mott-Schottky Electrocatalysts for Advanced Lithium-Sulfur Batteries. Li Y; Wang W; Zhang B; Fu L; Wan M; Li G; Cai Z; Tu S; Duan X; Seh ZW; Jiang J; Sun Y Nano Lett; 2021 Aug; 21(15):6656-6663. PubMed ID: 34291943 [TBL] [Abstract][Full Text] [Related]
5. Fe-cation Doping in NiSe Shi L; Fang H; Yang X; Xue J; Li C; Hou S; Hu C ChemSusChem; 2021 Apr; 14(7):1710-1719. PubMed ID: 33595904 [TBL] [Abstract][Full Text] [Related]
6. Bidirectional Catalysts for Liquid-Solid Redox Conversion in Lithium-Sulfur Batteries. Wang R; Luo C; Wang T; Zhou G; Deng Y; He Y; Zhang Q; Kang F; Lv W; Yang QH Adv Mater; 2020 Aug; 32(32):e2000315. PubMed ID: 32627911 [TBL] [Abstract][Full Text] [Related]
7. Accelerating S↔Li Zhu X; Bian T; Song X; Zheng M; Shen Z; Liu Z; Guo Z; He J; Zeng Z; Bai F; Wen L; Zhang S; Lu J; Zhao Y Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202315087. PubMed ID: 38087471 [TBL] [Abstract][Full Text] [Related]
8. Understanding Electrochemical Reaction Mechanisms of Sulfur in All-Solid-State Batteries through Operando and Theoretical Studies. Cao D; Sun X; Li F; Bak SM; Ji T; Geiwitz M; Burch KS; Du Y; Yang G; Zhu H Angew Chem Int Ed Engl; 2023 May; 62(20):e202302363. PubMed ID: 36917787 [TBL] [Abstract][Full Text] [Related]
9. Mott-Schottky MXene@WS Wang Q; Liu A; Qiao S; Zhang Q; Huang C; Lei D; Shi X; He G; Zhang F ChemSusChem; 2023 Oct; 16(19):e202300507. PubMed ID: 37314096 [TBL] [Abstract][Full Text] [Related]
10. Utilizing the Built-in Electric Field of p-n Junctions to Spatially Propel the Stepwise Polysulfide Conversion in Lithium-Sulfur Batteries. Li H; Chen C; Yan Y; Yan T; Cheng C; Sun D; Zhang L Adv Mater; 2021 Dec; 33(51):e2105067. PubMed ID: 34632643 [TBL] [Abstract][Full Text] [Related]
11. Discovery of Dual-Functional Amorphous Titanium Suboxide to Promote Polysulfide Adsorption and Regulate Sulfide Growth in Li-S Batteries. Gueon D; Yoon J; Cho J; Moon JH Adv Sci (Weinh); 2022 Aug; 9(22):e2200958. PubMed ID: 35666049 [TBL] [Abstract][Full Text] [Related]
12. Direct Monitoring of Li Luo Y; Fang Z; Duan S; Wu H; Liu H; Zhao Y; Wang K; Li Q; Fan S; Zheng Z; Duan W; Zhang Y; Wang J Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202215802. PubMed ID: 36650422 [TBL] [Abstract][Full Text] [Related]
13. Establishing Transition Metal Phosphides as Effective Sulfur Hosts in Lithium-Sulfur Batteries through the Triple Effect of "Confinement-Adsorption-Catalysis". Wang F; Han Y; Xu R; Li A; Feng X; Lv S; Wang T; Song L; Li J; Wei Z Small; 2023 Oct; 19(42):e2303599. PubMed ID: 37330660 [TBL] [Abstract][Full Text] [Related]
14. Accelerated Multi-step Sulfur Redox Reactions in Lithium-Sulfur Batteries Enabled by Dual Defects in Metal-Organic Framework-based Catalysts. Wang X; Zhang X; Zhao Y; Luo D; Shui L; Li Y; Ma G; Zhu Y; Zhang Y; Zhou G; Yu A; Chen Z Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202306901. PubMed ID: 37302981 [TBL] [Abstract][Full Text] [Related]
15. Fast Polysulfide Conversion Catalysis and Reversible Anode Operation by A Single Cathode Modifier in Li-Metal Anode-Free Lithium-Sulfur Batteries. Zhao Y; Huang L; Zhao D; Yang Lee J Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202308976. PubMed ID: 37475640 [TBL] [Abstract][Full Text] [Related]
16. Selective Catalysis Remedies Polysulfide Shuttling in Lithium-Sulfur Batteries. Hua W; Li H; Pei C; Xia J; Sun Y; Zhang C; Lv W; Tao Y; Jiao Y; Zhang B; Qiao SZ; Wan Y; Yang QH Adv Mater; 2021 Sep; 33(38):e2101006. PubMed ID: 34338356 [TBL] [Abstract][Full Text] [Related]
17. Synergistically Accelerating Adsorption-Electrocataysis of Sulfur Species via Interfacial Built-In Electric Field of SnS Chen L; Yue L; Wang X; Wu S; Wang W; Lu D; Liu X; Zhou W; Li Y Small; 2023 Apr; 19(15):e2206462. PubMed ID: 36642788 [TBL] [Abstract][Full Text] [Related]
18. Furnishing Continuous Efficient Bidirectional Polysulfide Conversion for Long-Life and High-Loading Lithium-Sulfur Batteries via the Built-In Electric Field. Ren Y; Ma Y; Wang B; Chang S; Zhai Q; Wu H; Dai Y; Yang Y; Tang S; Meng X Small; 2023 Sep; 19(36):e2300065. PubMed ID: 37147776 [TBL] [Abstract][Full Text] [Related]
19. Cobalt(II) Tetraaminophthalocyanine-modified Multiwall Carbon Nanotubes as an Efficient Sulfur Redox Catalyst for Lithium-Sulfur Batteries. Yang XX; Du WZ; Li XT; Zhang Y; Qian Z; Biggs MJ; Hu C ChemSusChem; 2020 Jun; 13(11):3034-3044. PubMed ID: 32189456 [TBL] [Abstract][Full Text] [Related]
20. High Capacity Li Fujita Y; Sakuda A; Hasegawa Y; Deguchi M; Motohashi K; Jiong D; Tsukasaki H; Mori S; Tatsumisago M; Hayashi A Small; 2023 Sep; 19(36):e2302179. PubMed ID: 37127858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]