BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38009661)

  • 1. Multi-omics-driven advances in the understanding of triacylglycerol biosynthesis in oil seeds.
    Li H; Che R; Zhu J; Yang X; Li J; Fernie AR; Yan J
    Plant J; 2024 Feb; 117(4):999-1017. PubMed ID: 38009661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus.
    Zhang Z; Dunwell JM; Zhang YM
    BMC Plant Biol; 2018 Dec; 18(1):328. PubMed ID: 30514240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops.
    Gupta M; Bhaskar PB; Sriram S; Wang PH
    Plant Cell Rep; 2017 May; 36(5):637-652. PubMed ID: 27796489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in
    Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed.
    Nesi N; Delourme R; Brégeon M; Falentin C; Renard M
    C R Biol; 2008 Oct; 331(10):763-71. PubMed ID: 18926490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds.
    Lu S; Sturtevant D; Aziz M; Jin C; Li Q; Chapman KD; Guo L
    Plant J; 2018 Jun; 94(6):915-932. PubMed ID: 29752761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus.
    Ding LN; Gu SL; Zhu FG; Ma ZY; Li J; Li M; Wang Z; Tan XL
    BMC Plant Biol; 2020 Jan; 20(1):21. PubMed ID: 31931712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter.
    Vigeolas H; Waldeck P; Zank T; Geigenberger P
    Plant Biotechnol J; 2007 May; 5(3):431-41. PubMed ID: 17430545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated omics analysis reveals the gene expression profiles of maize, castor bean, and rapeseed for seed oil biosynthesis.
    Liu N; Liu J; Fan S; Liu H; Zhou XR; Hua W; Zheng M
    BMC Plant Biol; 2022 Mar; 22(1):153. PubMed ID: 35350998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos.
    Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X
    Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Trienoic Fatty Acids into Cottonseed Oil Improves Low-Temperature Seed Germination, Plant Photosynthesis and Cotton Fiber Quality.
    Gao L; Chen W; Xu X; Zhang J; Singh TK; Liu S; Zhang D; Tian L; White A; Shrestha P; Zhou XR; Llewellyn D; Green A; Singh SP; Liu Q
    Plant Cell Physiol; 2020 Jul; 61(7):1335-1347. PubMed ID: 32379869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol.
    Aznar-Moreno J; Denolf P; Van Audenhove K; De Bodt S; Engelen S; Fahy D; Wallis JG; Browse J
    J Exp Bot; 2015 Oct; 66(20):6497-506. PubMed ID: 26195728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive modeling of biomass component tradeoffs in Brassica napus developing oilseeds based on in silico manipulation of storage metabolism.
    Schwender J; Hay JO
    Plant Physiol; 2012 Nov; 160(3):1218-36. PubMed ID: 22984123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality.
    Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP
    BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seeds as oil factories.
    Baud S
    Plant Reprod; 2018 Sep; 31(3):213-235. PubMed ID: 29429143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of novel loci controlling seed oil content in Brassica napus by marker metabolite-based multi-omics analysis.
    Li L; Tian Z; Chen J; Tan Z; Zhang Y; Zhao H; Wu X; Yao X; Wen W; Chen W; Guo L
    Genome Biol; 2023 Jun; 24(1):141. PubMed ID: 37337206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metabolic engineering of edible plant oils].
    Yue AQ; Sun XP; Li RZ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):489-98. PubMed ID: 18349502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L.
    Li H; Yu K; Zhang Z; Yu Y; Wan J; He H; Fan C
    Plant Biotechnol J; 2024 Feb; 22(2):445-459. PubMed ID: 37856327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of specific organs on seed oil accumulation in Brassica napus L.
    Liu J; Hua W; Yang H; Guo T; Sun X; Wang X; Liu G; Wang H
    Plant Sci; 2014 Oct; 227():60-8. PubMed ID: 25219307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soybean (Glycine max L.) triacylglycerol lipase GmSDP1 regulates the quality and quantity of seed oil.
    Kanai M; Yamada T; Hayashi M; Mano S; Nishimura M
    Sci Rep; 2019 Jun; 9(1):8924. PubMed ID: 31222045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.