BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38009661)

  • 21. Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of
    Chen K; Yin Y; Ding Y; Chao H; Li M
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835614
    [No Abstract]   [Full Text] [Related]  

  • 22. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.
    Tan H; Xie Q; Xiang X; Li J; Zheng S; Xu X; Guo H; Ye W
    PLoS One; 2015; 10(4):e0124794. PubMed ID: 25919591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring genotypic variations for improved oil content and healthy fatty acids composition in rapeseed (Brassica napus L.).
    Ishaq M; Razi R; Khan SA
    J Sci Food Agric; 2017 Apr; 97(6):1924-1930. PubMed ID: 27539751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa).
    Vuorinen AL; Kalpio M; Linderborg KM; Kortesniemi M; Lehto K; Niemi J; Yang B; Kallio HP
    Food Chem; 2014 Feb; 145():664-73. PubMed ID: 24128529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of proteomic and genomic approaches to dissect seed germination vigor in Brassica napus seeds differing in oil content.
    Gu J; Hou D; Li Y; Chao H; Zhang K; Wang H; Xiang J; Raboanatahiry N; Wang B; Li M
    BMC Plant Biol; 2019 Jan; 19(1):21. PubMed ID: 30634904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of candidate genes in cotton associated with specific seed traits and their initial functional characterization in Arabidopsis.
    Hu Y; Han Z; Shen W; Jia Y; He L; Si Z; Wang Q; Fang L; Du X; Zhang T
    Plant J; 2022 Nov; 112(3):800-811. PubMed ID: 36121755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus.
    Ding LN; Guo XJ; Li M; Fu ZL; Yan SZ; Zhu KM; Wang Z; Tan XL
    Plant Cell Rep; 2019 Feb; 38(2):243-253. PubMed ID: 30535511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Overexpression of
    Guo Y; Li D; Liu T; Liao M; Li Y; Zhang W; Liu Z; Chen M
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content.
    Li RJ; Wang HZ; Mao H; Lu YT; Hua W
    Planta; 2006 Sep; 224(4):952-62. PubMed ID: 16575595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils.
    Bai S; Engelen S; Denolf P; Wallis JG; Lynch K; Bengtsson JD; Van Thournout M; Haesendonckx B; Browse J
    Plant J; 2019 Apr; 98(1):33-41. PubMed ID: 30536486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus.
    Yao M; Guan M; Yang Q; Huang L; Xiong X; Jan HU; Voss-Fels KP; Werner CR; He X; Qian W; Snowdon RJ; Guan C; Hua W; Qian L
    Theor Appl Genet; 2021 May; 134(5):1545-1555. PubMed ID: 33677638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oil body proteins sequentially accumulate throughout seed development in Brassica napus.
    Jolivet P; Boulard C; Bellamy A; Valot B; d'Andréa S; Zivy M; Nesi N; Chardot T
    J Plant Physiol; 2011 Nov; 168(17):2015-20. PubMed ID: 21803444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed.
    Wu XL; Liu ZH; Hu ZH; Huang RZ
    J Integr Plant Biol; 2014 Jun; 56(6):582-93. PubMed ID: 24393360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decreased seed oil production in FUSCA3 Brassica napus mutant plants.
    Elahi N; Duncan RW; Stasolla C
    Plant Physiol Biochem; 2015 Nov; 96():222-30. PubMed ID: 26302483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica.
    Guan R; Lager I; Li X; Stymne S; Zhu LH
    Plant Biotechnol J; 2014 Feb; 12(2):193-203. PubMed ID: 24119222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Better together: Protein partnerships for lineage-specific oil accumulation.
    Busta L; Chapman KD; Cahoon EB
    Curr Opin Plant Biol; 2022 Apr; 66():102191. PubMed ID: 35220088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus.
    Tang S; Liu DX; Lu S; Yu L; Li Y; Lin S; Li L; Du Z; Liu X; Li X; Ma W; Yang QY; Guo L
    Plant J; 2020 Dec; 104(5):1410-1422. PubMed ID: 33048384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition.
    Burns MJ; Barnes SR; Bowman JG; Clarke MH; Werner CP; Kearsey MJ
    Heredity (Edinb); 2003 Jan; 90(1):39-48. PubMed ID: 12522424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of specific fatty acids on the asymmetric distribution of saturated fatty acids in sunflower (Helianthus annuus L.) triacylglycerols.
    Martínez-Force E; Ruiz-López N; Garcés R
    J Agric Food Chem; 2009 Feb; 57(4):1595-9. PubMed ID: 19166295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production.
    Lee KR; Chen GQ; Kim HU
    Plant Cell Rep; 2015 Apr; 34(4):603-15. PubMed ID: 25577331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.