BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38009661)

  • 41. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.).
    Kelly AA; Shaw E; Powers SJ; Kurup S; Eastmond PJ
    Plant Biotechnol J; 2013 Apr; 11(3):355-61. PubMed ID: 23171303
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide association study reveals a patatin-like lipase relating to the reduction of seed oil content in Brassica napus.
    Wang H; Wang Q; Pak H; Yan T; Chen M; Chen X; Wu D; Jiang L
    BMC Plant Biol; 2021 Jan; 21(1):6. PubMed ID: 33407143
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent advances in enhancement of oil content in oilseed crops.
    Zafar S; Li YL; Li NN; Zhu KM; Tan XL
    J Biotechnol; 2019 Aug; 301():35-44. PubMed ID: 31158409
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative deep transcriptional profiling of four developing oilseeds.
    Troncoso-Ponce MA; Kilaru A; Cao X; Durrett TP; Fan J; Jensen JK; Thrower NA; Pauly M; Wilkerson C; Ohlrogge JB
    Plant J; 2011 Dec; 68(6):1014-27. PubMed ID: 21851431
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L.
    Su ZZ; Wang T; Shrivastava N; Chen YY; Liu X; Sun C; Yin Y; Gao QK; Lou BG
    Microbiol Res; 2017 Jun; 199():29-39. PubMed ID: 28454707
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glycerol-3-Phosphate Acyltransferase GPAT9 Enhanced Seed Oil Accumulation and Eukaryotic Galactolipid Synthesis in
    Gong W; Chen W; Gao Q; Qian L; Yuan X; Tang S; Hong Y
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003299
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Progress in modification of sunflower oil to expand its industrial value.
    Rauf S; Jamil N; Tariq SA; Khan M; Kausar M; Kaya Y
    J Sci Food Agric; 2017 May; 97(7):1997-2006. PubMed ID: 28093767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Seed-specific expression of the class 2 Phytoglobin (Pgb2) increases seed oil in Brassica napus.
    Haq ME; Mira MM; Duncan RW; Hill RD; Stasolla C
    J Plant Physiol; 2023 Aug; 287():154032. PubMed ID: 37392526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa.
    Snapp AR; Kang J; Qi X; Lu C
    Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.).
    Nath UK; Wilmer JA; Wallington EJ; Becker HC; Möllers C
    Theor Appl Genet; 2009 Feb; 118(4):765-73. PubMed ID: 19050848
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic Changes during Storage of Brassica napus Seeds under Moist Conditions and the Consequences for the Sensory Quality of the Resulting Virgin Oil.
    Bonte A; Schweiger R; Pons C; Wagner C; Brühl L; Matthäus B; Müller C
    J Agric Food Chem; 2017 Dec; 65(50):11073-11084. PubMed ID: 29205038
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-value oils from plants.
    Dyer JM; Stymne S; Green AG; Carlsson AS
    Plant J; 2008 May; 54(4):640-55. PubMed ID: 18476869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcriptomic Analysis of the Reduction in Seed Oil Content through Increased Nitrogen Application Rate in Rapeseed (
    Hao P; Ren Y; Lin B; Yi K; Huang L; Li X; Jiang L; Hua S
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetic possibilities for altering sunflower oil quality to obtain novel oils.
    Skorić D; Jocić S; Sakac Z; Lecić N
    Can J Physiol Pharmacol; 2008 Apr; 86(4):215-21. PubMed ID: 18418432
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis.
    Liu F; Xia Y; Wu L; Fu D; Hayward A; Luo J; Yan X; Xiong X; Fu P; Wu G; Lu C
    Gene; 2015 Feb; 557(2):163-71. PubMed ID: 25523093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glycolytic enzymatic activities in developing seeds involved in the differences between standard and low oil content sunflowers (Helianthus annuus L.).
    Troncoso-Ponce MA; Garcés R; Martínez-Force E
    Plant Physiol Biochem; 2010 Dec; 48(12):961-5. PubMed ID: 20951055
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel type of Brassica napus with higher stearic acid in seeds developed through genome editing of BnaSAD2 family.
    Huang H; Ahmar S; Samad RA; Qin P; Yan T; Zhao Q; Xie K; Zhang C; Fan C; Zhou Y
    Theor Appl Genet; 2023 Aug; 136(9):187. PubMed ID: 37572171
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus.
    Shi J; Lang C; Wu X; Liu R; Zheng T; Zhang D; Chen J; Wu G
    Biochem Biophys Res Commun; 2015 Oct; 466(3):518-22. PubMed ID: 26381181
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).
    Jiang C; Shi J; Li R; Long Y; Wang H; Li D; Zhao J; Meng J
    Theor Appl Genet; 2014 Apr; 127(4):957-68. PubMed ID: 24504552
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape.
    Vigeolas H; Möhlmann T; Martini N; Neuhaus HE; Geigenberger P
    Plant Physiol; 2004 Sep; 136(1):2676-86. PubMed ID: 15333758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.