BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38010000)

  • 1. Multiple phosphorylation sites regulate the activity of the repressor Mig1 in
    Ramírez-Zavala B; Betsova D; Schwanfelder S; Krüger I; Mottola A; Krüger T; Kniemeyer O; Brakhage AA; Morschhäuser J
    mSphere; 2023 Dec; 8(6):e0054623. PubMed ID: 38010000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Suppressor Mutation in the β-Subunit Kis1 Restores Functionality of the SNF1 Complex in
    Ramírez-Zavala B; Mottola A; Krüger I; Morschhäuser J
    mSphere; 2021 Dec; 6(6):e0092921. PubMed ID: 34908458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality.
    Lagree K; Woolford CA; Huang MY; May G; McManus CJ; Solis NV; Filler SG; Mitchell AP
    PLoS Genet; 2020 Jan; 16(1):e1008582. PubMed ID: 31961865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae.
    Treitel MA; Kuchin S; Carlson M
    Mol Cell Biol; 1998 Nov; 18(11):6273-80. PubMed ID: 9774644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1.
    Yao Y; Tsuchiyama S; Yang C; Bulteau AL; He C; Robison B; Tsuchiya M; Miller D; Briones V; Tar K; Potrero A; Friguet B; Kennedy BK; Schmidt M
    PLoS Genet; 2015 Jan; 11(1):e1004968. PubMed ID: 25629410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae.
    DeVit MJ; Johnston M
    Curr Biol; 1999 Nov; 9(21):1231-41. PubMed ID: 10556086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms.
    Shashkova S; Wollman AJM; Leake MC; Hohmann S
    FEMS Microbiol Lett; 2017 Aug; 364(14):. PubMed ID: 28854669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mig1 localization exhibits biphasic behavior which is controlled by both metabolic and regulatory roles of the sugar kinases.
    Schmidt GW; Welkenhuysen N; Ye T; Cvijovic M; Hohmann S
    Mol Genet Genomics; 2020 Nov; 295(6):1489-1500. PubMed ID: 32948893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor.
    Papamichos-Chronakis M; Gligoris T; Tzamarias D
    EMBO Rep; 2004 Apr; 5(4):368-72. PubMed ID: 15031717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps.
    García-Salcedo R; Lubitz T; Beltran G; Elbing K; Tian Y; Frey S; Wolkenhauer O; Krantz M; Klipp E; Hohmann S
    FEBS J; 2014 Apr; 281(7):1901-17. PubMed ID: 24529170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression.
    Zaragoza O; Rodríguez C; Gancedo C
    J Bacteriol; 2000 Jan; 182(2):320-6. PubMed ID: 10629176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae.
    Vallier LG; Carlson M
    Genetics; 1994 May; 137(1):49-54. PubMed ID: 8056322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Snf1 kinase of the filamentous fungus Hypocrea jecorina phosphorylates regulation-relevant serine residues in the yeast carbon catabolite repressor Mig1 but not in the filamentous fungal counterpart Cre1.
    Cziferszky A; Seiboth B; Kubicek CP
    Fungal Genet Biol; 2003 Nov; 40(2):166-75. PubMed ID: 14516769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution.
    Ahuatzi D; Riera A; Pela Ez R; Herrero P; Moreno F
    J Biol Chem; 2007 Feb; 282(7):4485-4493. PubMed ID: 17178716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell study links metabolism with nutrient signaling and reveals sources of variability.
    Welkenhuysen N; Borgqvist J; Backman M; Bendrioua L; Goksör M; Adiels CB; Cvijovic M; Hohmann S
    BMC Syst Biol; 2017 Jun; 11(1):59. PubMed ID: 28583118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels.
    Bendrioua L; Smedh M; Almquist J; Cvijovic M; Jirstrand M; Goksör M; Adiels CB; Hohmann S
    J Biol Chem; 2014 May; 289(18):12863-75. PubMed ID: 24627493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional domains in the Mig1 repressor.
    Ostling J; Carlberg M; Ronne H
    Mol Cell Biol; 1996 Mar; 16(3):753-61. PubMed ID: 8622676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Viable Candida albicans Mutants Lacking the "Essential" Protein Kinase Snf1 by Inducible Gene Deletion.
    Mottola A; Schwanfelder S; Morschhäuser J
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32817381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and carbon source regulation of phosphorylation of Sip1p, a Snf1p-associated protein involved in carbon response in Saccharomyces cerevisiae.
    Long RM; Hopper JE
    Yeast; 1995 Mar; 11(3):233-46. PubMed ID: 7785324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.