These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38010132)

  • 1. Nanoscale Hotspot-Induced Emitters in DNA Origami-Assisted Nanoantennas.
    Yeşilyurt ATM; Wu X; Tapio K; Bald I; Huang JS
    J Am Chem Soc; 2023 Dec; 145(48):25928-25932. PubMed ID: 38010132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy.
    Kühler P; Roller EM; Schreiber R; Liedl T; Lohmüller T; Feldmann J
    Nano Lett; 2014 May; 14(5):2914-9. PubMed ID: 24754830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Origami Nanoantennas for Fluorescence Enhancement.
    Glembockyte V; Grabenhorst L; Trofymchuk K; Tinnefeld P
    Acc Chem Res; 2021 Sep; 54(17):3338-3348. PubMed ID: 34435769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM.
    Puchkova A; Vietz C; Pibiri E; Wünsch B; Sanz Paz M; Acuna GP; Tinnefeld P
    Nano Lett; 2015 Dec; 15(12):8354-9. PubMed ID: 26523768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA origami-mediated plasmonic dimer nanoantenna-based SERS biosensor for ultrasensitive determination of trace diethylstilbestrol.
    Li S; Shi B; He D; Zhou H; Gao Z
    J Hazard Mater; 2023 Sep; 458():131874. PubMed ID: 37379602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas.
    Kanehira Y; Tapio K; Wegner G; Kogikoski S; Rüstig S; Prietzel C; Busch K; Bald I
    ACS Nano; 2023 Nov; 17(21):21227-21239. PubMed ID: 37847540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold Nanorod DNA Origami Antennas for 3 Orders of Magnitude Fluorescence Enhancement in NIR.
    Trofymchuk K; Kołątaj K; Glembockyte V; Zhu F; Acuna GP; Liedl T; Tinnefeld P
    ACS Nano; 2023 Jan; ():. PubMed ID: 36594816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas.
    Simoncelli S; Roller EM; Urban P; Schreiber R; Turberfield AJ; Liedl T; Lohmüller T
    ACS Nano; 2016 Nov; 10(11):9809-9815. PubMed ID: 27649370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Molecule Surface-Enhanced Raman Scattering Measurements Enabled by Plasmonic DNA Origami Nanoantennas.
    Mostafa A; Kanehira Y; Dutta A; Kogikoski S; Bald I
    J Vis Exp; 2023 Jul; (197):. PubMed ID: 37677030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas.
    Acuna GP; Möller FM; Holzmeister P; Beater S; Lalkens B; Tinnefeld P
    Science; 2012 Oct; 338(6106):506-10. PubMed ID: 23112329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband SERS Enhancement by DNA Origami Assembled Bimetallic Nanoantennas with Label-Free Single Protein Sensing.
    Tanwar S; Kaur V; Kaur G; Sen T
    J Phys Chem Lett; 2021 Aug; 12(33):8141-8150. PubMed ID: 34410129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarized Single-Particle Quantum Dot Emitters through Programmable Cluster Assembly.
    Zhang H; Li M; Wang K; Tian Y; Chen JS; Fountaine KT; DiMarzio D; Liu M; Cotlet M; Gang O
    ACS Nano; 2020 Feb; 14(2):1369-1378. PubMed ID: 31877024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Origami Guided Self-Assembly of Plasmonic Polymers with Robust Long-Range Plasmonic Resonance.
    Wang P; Huh JH; Park H; Yang D; Zhang Y; Zhang Y; Lee J; Lee S; Ke Y
    Nano Lett; 2020 Dec; 20(12):8926-8932. PubMed ID: 33186046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accessible hotspots for single-protein SERS in DNA-origami assembled gold nanorod dimers with tip-to-tip alignment.
    Schuknecht F; Kołątaj K; Steinberger M; Liedl T; Lohmueller T
    Nat Commun; 2023 Nov; 14(1):7192. PubMed ID: 37938571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoluminescence-Driven Broadband Transmitting Directional Optical Nanoantennas.
    See KM; Lin FC; Chen TY; Huang YX; Huang CH; Yeşilyurt ATM; Huang JS
    Nano Lett; 2018 Sep; 18(9):6002-6008. PubMed ID: 30142981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Versatile DNA Origami-Based Plasmonic Nanoantenna for Label-Free Single-Molecule Surface-Enhanced Raman Spectroscopy.
    Tapio K; Mostafa A; Kanehira Y; Suma A; Dutta A; Bald I
    ACS Nano; 2021 Apr; 15(4):7065-7077. PubMed ID: 33872513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.
    Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L
    Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas.
    Chen WL; Lin FC; Lee YY; Li FC; Chang YM; Huang JS
    ACS Nano; 2014 Sep; 8(9):9053-62. PubMed ID: 25207747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami.
    Chikkaraddy R; Turek VA; Kongsuwan N; Benz F; Carnegie C; van de Goor T; de Nijs B; Demetriadou A; Hess O; Keyser UF; Baumberg JJ
    Nano Lett; 2018 Jan; 18(1):405-411. PubMed ID: 29166033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectively accessing the hotspots of optical nanoantennas by self-aligned dry laser ablation.
    Schäfer C; Perera PN; Laible F; Olynick DL; Schwartzberg AM; Weber-Bargioni A; Cabrini S; Schuck PJ; Kern DP; Fleischer M
    Nanoscale; 2020 Oct; 12(37):19170-19177. PubMed ID: 32926034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.