BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38010144)

  • 1. Air-Stable Ni Catalysts Prepared by Liquid-Phase Reduction Using Hydrosilanes for Reactions with Hydrogen.
    Kita Y; Kato K; Takeuchi S; Oyoshi T; Kamata K; Hara M
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55659-55668. PubMed ID: 38010144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.
    Ryabchuk P; Agostini G; Pohl MM; Lund H; Agapova A; Junge H; Junge K; Beller M
    Sci Adv; 2018 Jun; 4(6):eaat0761. PubMed ID: 29888329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-embedded Ni nanocatalysts derived from MOFs by a sacrificial template method for efficient hydrogenation of furfural to tetrahydrofurfuryl alcohol.
    Su Y; Chen C; Zhu X; Zhang Y; Gong W; Zhang H; Zhao H; Wang G
    Dalton Trans; 2017 May; 46(19):6358-6365. PubMed ID: 28463366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Si-H bond activation at {(NHC)₂Ni⁰} leading to hydrido silyl and bis(silyl) complexes: a versatile tool for catalytic Si-H/D exchange, acceptorless dehydrogenative coupling of hydrosilanes, and hydrogenation of disilanes to hydrosilanes.
    Schmidt D; Zell T; Schaub T; Radius U
    Dalton Trans; 2014 Jul; 43(28):10816-27. PubMed ID: 24894607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic liquid-Pluronic P123 mixed micelle stabilized water-soluble Ni nanoparticles for catalytic hydrogenation.
    Yu Y; Zhu W; Hua L; Yang H; Qiao Y; Zhang R; Guo L; Zhao X; Hou Z
    J Colloid Interface Sci; 2014 Feb; 415():117-26. PubMed ID: 24267338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen-Doped Carbon-Supported Nickel Nanoparticles: A Robust Catalyst to Bridge the Hydrogenation of Nitriles and the Reductive Amination of Carbonyl Compounds for the Synthesis of Primary Amines.
    Zhang Y; Yang H; Chi Q; Zhang Z
    ChemSusChem; 2019 Mar; 12(6):1246-1255. PubMed ID: 30600939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The promotional effect of surface defects on the catalytic performance of supported nickel-based catalysts.
    Li Y; Yu J; Li W; Fan G; Yang L; Li F
    Phys Chem Chem Phys; 2016 Mar; 18(9):6548-58. PubMed ID: 26864098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic liquid immobilized nickel(0) nanoparticles as stable and highly efficient catalysts for selective hydrogenation in the aqueous phase.
    Hu Y; Yu Y; Hou Z; Yang H; Feng B; Li H; Qiao Y; Wang X; Hua L; Pan Z; Zhao X
    Chem Asian J; 2010 May; 5(5):1178-84. PubMed ID: 20340156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-Dependent Catalytic Activity of Monodispersed Nickel Nanoparticles for the Hydrolytic Dehydrogenation of Ammonia Borane.
    Guo K; Li H; Yu Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):517-525. PubMed ID: 29243479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic-assisted synthesis of highly stable RuPd bimetallic catalysts supported on MgAl-layered double hydroxide for N-ethylcarbazole hydrogenation.
    Liu X; Shi J; Bai X; Wu W
    Environ Sci Pollut Res Int; 2022 Jul; 29(32):48558-48572. PubMed ID: 35192166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.
    Budi CS; Wu HC; Chen CS; Saikia D; Kao HM
    ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Catalytic Performance of a CeO
    She W; Qi T; Cui M; Yan P; Ng SW; Li W; Li G
    ACS Appl Mater Interfaces; 2018 May; 10(17):14698-14707. PubMed ID: 29638107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO
    Chen C; Wang W; Ren Q; Ye R; Nie N; Liu Z; Zhang L; Xiao J
    Front Chem; 2022; 10():993691. PubMed ID: 36118307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Study of Pd-Ni Bimetallic Catalysts Supported on UiO-66 and UiO-66-NH
    Liu L; Yu L; Zhou X; Xin C; Sun S; Liu Z; Zhang J; Liu Y; Tai X
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-Supported Raney Nickel Catalyst for Acetone Hydrogenation with High Selectivity.
    Lu S; Wu J; Peng H; Chen Y
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32069793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-Controlled NiO Nanoparticles on Reduced Graphene Oxide as Electrocatalysts for Overall Water Splitting.
    Jo SG; Kim CS; Kim SJ; Lee JW
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supported Ni Catalyst for Liquid Phase Hydrogenation of Adiponitrile to 6-Aminocapronitrile and Hexamethyenediamine.
    Wang C; Jia Z; Zhen B; Han M
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29300298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general and robust Ni-based nanocatalyst for selective hydrogenation reactions at low temperature and pressure.
    Hu Y; Liu M; Bartling S; Lund H; Atia H; Dyson PJ; Beller M; Jagadeesh RV
    Sci Adv; 2023 Dec; 9(48):eadj8225. PubMed ID: 38039372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Highly Stable Ni
    Kuhaudomlap S; Mekasuwandumrong O; Praserthdam P; Lee KM; Jones CW; Panpranot J
    ACS Omega; 2023 Jan; 8(1):249-261. PubMed ID: 36643509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Effects of Earth-Abundant Metal-Metal Oxide Enable Reductive Amination of Carbonyls at 50 °C.
    Bhunia MK; Chandra D; Abe H; Niwa Y; Hara M
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4144-4154. PubMed ID: 35014256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.