These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38010166)
1. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. Wen X; Wang J; Pei X; Zhang X J Mater Chem B; 2023 Dec; 11(48):11405-11425. PubMed ID: 38010166 [TBL] [Abstract][Full Text] [Related]
2. Sol-gel based synthesis and biological properties of zinc integrated nano bioglass ceramics for bone tissue regeneration. Paramita P; Ramachandran M; Narashiman S; Nagarajan S; Sukumar DK; Chung TW; Ambigapathi M J Mater Sci Mater Med; 2021 Jan; 32(1):5. PubMed ID: 33471255 [TBL] [Abstract][Full Text] [Related]
3. Effects of Metformin Delivery via Biomaterials on Bone and Dental Tissue Engineering. Zhu M; Zhao Z; Xu HHK; Dai Z; Yu K; Xiao L; Schneider A; Weir MD; Oates TW; Bai Y; Zhang K Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555544 [TBL] [Abstract][Full Text] [Related]
4. Osteogenic potential of Zn Wang B; Yang M; Liu L; Yan G; Yan H; Feng J; Li Z; Li D; Sun H; Yang B Biomater Sci; 2019 Nov; 7(12):5414-5423. PubMed ID: 31633717 [TBL] [Abstract][Full Text] [Related]
5. Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration. Liang W; Gao M; Lou J; Bai Y; Zhang J; Lu T; Sun X; Ye J; Li B; Sun L; Heng BC; Zhang X; Deng X J Mater Chem B; 2020 Apr; 8(15):3038-3049. PubMed ID: 32196049 [TBL] [Abstract][Full Text] [Related]
6. Silk Biomaterials for Bone Tissue Engineering. Ding Z; Cheng W; Mia MS; Lu Q Macromol Biosci; 2021 Aug; 21(8):e2100153. PubMed ID: 34117836 [TBL] [Abstract][Full Text] [Related]
7. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075 [TBL] [Abstract][Full Text] [Related]
8. Manufacturing functional hydrogels for inducing angiogenic-osteogenic coupled progressions in hard tissue repairs: prospects and challenges. Kumar A; Sood A; Singhmar R; Mishra YK; Thakur VK; Han SS Biomater Sci; 2022 Sep; 10(19):5472-5497. PubMed ID: 35994005 [TBL] [Abstract][Full Text] [Related]
9. Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli. Huang X; Huang D; Zhu T; Yu X; Xu K; Li H; Qu H; Zhou Z; Cheng K; Wen W; Ye Z J Nanobiotechnology; 2021 Jul; 19(1):207. PubMed ID: 34247649 [TBL] [Abstract][Full Text] [Related]
10. Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite. Kazimierczak P; Kolmas J; Przekora A Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390753 [TBL] [Abstract][Full Text] [Related]
11. The immunomodulatory effects of RNA-based biomaterials on bone regeneration. Wang CY; Qin ZX; Wei Y; Hao JX; Zhu YF; Zhao F; Jiao K; Ehrlich H; Tay FR; Niu LN Acta Biomater; 2023 May; 162():32-43. PubMed ID: 36967055 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Jia B; Yang H; Han Y; Zhang Z; Qu X; Zhuang Y; Wu Q; Zheng Y; Dai K Acta Biomater; 2020 May; 108():358-372. PubMed ID: 32165194 [TBL] [Abstract][Full Text] [Related]
13. Applications of Bioactive Ions in Bone Regeneration. Lin SH; Zhang WJ; Jiang XQ Chin J Dent Res; 2019; 22(2):93-104. PubMed ID: 31172137 [TBL] [Abstract][Full Text] [Related]
14. The development of magnesium-based biomaterials in bone tissue engineering: A review. Wu J; Cheng X; Wu J; Chen J; Pei X J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35326. PubMed ID: 37861271 [TBL] [Abstract][Full Text] [Related]
15. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Jin S; Xia X; Huang J; Yuan C; Zuo Y; Li Y; Li J Acta Biomater; 2021 Jun; 127():56-79. PubMed ID: 33831569 [TBL] [Abstract][Full Text] [Related]
16. Current state of fabrication technologies and materials for bone tissue engineering. Wubneh A; Tsekoura EK; Ayranci C; Uludağ H Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515 [TBL] [Abstract][Full Text] [Related]
17. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Wu C; Zhou Y; Lin C; Chang J; Xiao Y Acta Biomater; 2012 Oct; 8(10):3805-15. PubMed ID: 22750735 [TBL] [Abstract][Full Text] [Related]
18. Functionalized 3D-Printed ST2/Gelatin Methacryloyl/Polcaprolactone Scaffolds for Enhancing Bone Regeneration with Vascularization. Liu G; Chen J; Wang X; Liu Y; Ma Y; Tu X Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955478 [TBL] [Abstract][Full Text] [Related]
19. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Wan Z; Zhang P; Liu Y; Lv L; Zhou Y Acta Biomater; 2020 Jan; 101():26-42. PubMed ID: 31672585 [TBL] [Abstract][Full Text] [Related]
20. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification. Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]