These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38010330)

  • 1. Simulation of quantum walks on a circle with polar molecules via optimal control.
    Ding YK; Zhang ZY; Liu JM
    J Chem Phys; 2023 Nov; 159(20):. PubMed ID: 38010330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of three-qubit quantum computation with pendular states of polar molecules by optimal control.
    Zhang ZY; Liu JM; Hu Z; Wang Y
    J Chem Phys; 2020 Jan; 152(4):044303. PubMed ID: 32007056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical control of entanglement and coherence for polar molecules in pendular states.
    Zhang ZY; Liu JM; Hu Z; Wang Y
    Opt Express; 2019 Sep; 27(19):26588-26599. PubMed ID: 31674537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum gate control of polar molecules with machine learning.
    Zhang ZY; Hu JR; Fang YY; Li JF; Liu JM; Huang X; Sun Z
    J Chem Phys; 2024 Jul; 161(3):. PubMed ID: 39007369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of quantum logic gates using polar molecules in pendular states.
    Zhu J; Kais S; Wei Q; Herschbach D; Friedrich B
    J Chem Phys; 2013 Jan; 138(2):024104. PubMed ID: 23320665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Correlations and Coherence of Polar Symmetric Top Molecules in Pendular States.
    Zhang ZY; Liu JM
    Sci Rep; 2017 Dec; 7(1):17822. PubMed ID: 29259261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized Quantum Measurements on a Higher-Dimensional System via Quantum Walks.
    Wang X; Zhan X; Li Y; Xiao L; Zhu G; Qu D; Lin Q; Yu Y; Xue P
    Phys Rev Lett; 2023 Oct; 131(15):150803. PubMed ID: 37897782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EPR steering of polar molecules in pendular states and their dynamics under intrinsic decoherence.
    Zhang ZY; Wei D; Hu Z; Liu JM
    RSC Adv; 2018 Oct; 8(63):35928-35935. PubMed ID: 35558491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum walks with quantum chaotic coins: Loschmidt echo, classical limit, and thermalization.
    Omanakuttan S; Lakshminarayan A
    Phys Rev E; 2021 Jan; 103(1-1):012207. PubMed ID: 33601574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states.
    Han JX; Hu Y; Jin Y; Zhang GF
    J Chem Phys; 2016 Apr; 144(13):134308. PubMed ID: 27059571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization two-qubit quantum gate by two optical control methods in molecular pendular states.
    Li JF; Hu JR; Wan F; He DS
    Sci Rep; 2022 Sep; 12(1):14918. PubMed ID: 36050511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum walks with tuneable self-avoidance in one dimension.
    Camilleri E; Rohde PP; Twamley J
    Sci Rep; 2014 Apr; 4():4791. PubMed ID: 24762398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entanglement Generation of Polar Molecules via Deep Reinforcement Learning.
    Zhang ZY; Sun Z; Duan T; Ding YK; Huang X; Liu JM
    J Chem Theory Comput; 2024 Mar; 20(5):1811-1820. PubMed ID: 38320113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum to classical transition for random walks.
    Brun TA; Carteret HA; Ambainis A
    Phys Rev Lett; 2003 Sep; 91(13):130602. PubMed ID: 14525294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realization of quantum walks with negligible decoherence in waveguide lattices.
    Perets HB; Lahini Y; Pozzi F; Sorel M; Morandotti R; Silberberg Y
    Phys Rev Lett; 2008 May; 100(17):170506. PubMed ID: 18518267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic Discrete-time Quantum Walks and Applications.
    Neves L; Puentes G
    Entropy (Basel); 2018 Sep; 20(10):. PubMed ID: 33265820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A versatile quantum walk resonator with bright classical light.
    Sephton B; Dudley A; Ruffato G; Romanato F; Marrucci L; Padgett M; Goyal S; Roux F; Konrad T; Forbes A
    PLoS One; 2019; 14(4):e0214891. PubMed ID: 30964901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum hash function based on controlled alternate lively quantum walks.
    Hou P; Shang T; Zhang Y; Tang Y; Liu J
    Sci Rep; 2023 Apr; 13(1):5887. PubMed ID: 37041296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete single-photon quantum walks with tunable decoherence.
    Broome MA; Fedrizzi A; Lanyon BP; Kassal I; Aspuru-Guzik A; White AG
    Phys Rev Lett; 2010 Apr; 104(15):153602. PubMed ID: 20481989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrete-Time Quantum Walk on Multilayer Networks.
    Jayakody MN; Pradhan P; Ben Porath D; Cohen E
    Entropy (Basel); 2023 Nov; 25(12):. PubMed ID: 38136490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.