BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 38010516)

  • 1. Molecular Footprints on Osmoregulation-Related Genes Associated with Freshwater Colonization by Cetaceans and Sirenians.
    Ramos E; Selleghin-Veiga G; Magpali L; Daros B; Silva F; Picorelli A; Freitas L; Nery MF
    J Mol Evol; 2023 Dec; 91(6):865-881. PubMed ID: 38010516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of Positive Selection of Aquaporins Genes from Pontoporia blainvillei during the Evolutionary Process of Cetaceans.
    São Pedro SL; Alves JM; Barreto AS; Lima AO
    PLoS One; 2015; 10(7):e0134516. PubMed ID: 26226365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive evolution of the osmoregulation-related genes in cetaceans during secondary aquatic adaptation.
    Xu S; Yang Y; Zhou X; Xu J; Zhou K; Yang G
    BMC Evol Biol; 2013 Sep; 13():189. PubMed ID: 24015756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans.
    Shen T; Xu S; Wang X; Yu W; Zhou K; Yang G
    BMC Evol Biol; 2012 Mar; 12():39. PubMed ID: 22443485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection on different genes with equivalent functions: the convergence story told by Hox genes along the evolution of aquatic mammalian lineages.
    Nery MF; Borges B; Dragalzew AC; Kohlsdorf T
    BMC Evol Biol; 2016 May; 16(1):113. PubMed ID: 27209096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Footprints of Aquatic Adaptation Including Bone Mass Changes in Cetaceans.
    Zhou X; Sun D; Guang X; Ma S; Fang X; Mariotti M; Nielsen R; Gladyshev VN; Yang G
    Genome Biol Evol; 2018 Mar; 10(3):967-975. PubMed ID: 29608729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to Make a Dolphin: Molecular Signature of Positive Selection in Cetacean Genome.
    Nery MF; González DJ; Opazo JC
    PLoS One; 2013; 8(6):e65491. PubMed ID: 23840335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct evolution of toll-like receptor signaling pathway genes in cetaceans.
    Tian R; Seim I; Zhang Z; Yang Y; Ren W; Xu S; Yang G
    Genes Genomics; 2019 Dec; 41(12):1417-1430. PubMed ID: 31535317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomics of sirenians reveals evolution of filaggrin and caspase-14 upon adaptation of the epidermis to aquatic life.
    Steinbinder J; Sachslehner AP; Holthaus KB; Eckhart L
    Sci Rep; 2024 Apr; 14(1):9278. PubMed ID: 38653760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signature of positive selection in mitochondrial DNA in Cetartiodactyla.
    Mori S; Matsunami M
    Genes Genet Syst; 2018 Sep; 93(2):65-73. PubMed ID: 29643269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition to an Aquatic Habitat Permitted the Repeated Loss of the Pleiotropic KLK8 Gene in Mammals.
    Hecker N; Sharma V; Hiller M
    Genome Biol Evol; 2017 Nov; 9(11):3179-3188. PubMed ID: 29145610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased rate of hair keratin gene loss in the cetacean lineage.
    Nery MF; Arroyo JI; Opazo JC
    BMC Genomics; 2014 Oct; 15(1):869. PubMed ID: 25287022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diving deep: understanding the genetic components of hypoxia tolerance in marine mammals.
    Hindle AG
    J Appl Physiol (1985); 2020 May; 128(5):1439-1446. PubMed ID: 32324472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated evolution and diversifying selection drove the adaptation of cetacean bone microstructure.
    Sun D; Zhou X; Yu Z; Xu S; Seim I; Yang G
    BMC Evol Biol; 2019 Oct; 19(1):194. PubMed ID: 31651232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hundreds of Genes Experienced Convergent Shifts in Selective Pressure in Marine Mammals.
    Chikina M; Robinson JD; Clark NL
    Mol Biol Evol; 2016 Sep; 33(9):2182-92. PubMed ID: 27329977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neocortex of cetaceans: cytoarchitecture and comparison with other aquatic and terrestrial species.
    Butti C; Raghanti MA; Sherwood CC; Hof PR
    Ann N Y Acad Sci; 2011 Apr; 1225():47-58. PubMed ID: 21534992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of toll-like receptors in the context of terrestrial ungulates and cetaceans diversification.
    Ishengoma E; Agaba M
    BMC Evol Biol; 2017 Feb; 17(1):54. PubMed ID: 28209121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans.
    Chen Z; Wang Z; Xu S; Zhou K; Yang G
    BMC Evol Biol; 2013 Feb; 13():34. PubMed ID: 23394579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel Independent Losses of G-Type Lysozyme Genes in Hairless Aquatic Mammals.
    Zhang X; Chi H; Li G; Irwin DM; Zhang S; Rossiter SJ; Liu Y
    Genome Biol Evol; 2021 Sep; 13(9):. PubMed ID: 34450623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'Obesity' is healthy for cetaceans? Evidence from pervasive positive selection in genes related to triacylglycerol metabolism.
    Wang Z; Chen Z; Xu S; Ren W; Zhou K; Yang G
    Sci Rep; 2015 Sep; 5():14187. PubMed ID: 26381091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.