BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38010936)

  • 1. A Connectivity-Aware Graph Neural Network for Real-Time Drowsiness Classification.
    Zhuang Z; Wang YK; Chang YC; Liu J; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():83-93. PubMed ID: 38010936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel convolutional neural network method for subject-independent driver drowsiness detection based on single-channel data and EEG alpha spindles.
    Houshmand S; Kazemi R; Salmanzadeh H
    Proc Inst Mech Eng H; 2021 Sep; 235(9):1069-1078. PubMed ID: 34028321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG.
    Cui J; Lan Z; Liu Y; Li R; Li F; Sourina O; Müller-Wittig W
    Methods; 2022 Jun; 202():173-184. PubMed ID: 33901644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph analysis of functional brain network topology using minimum spanning tree in driver drowsiness.
    Chen J; Wang H; Hua C; Wang Q; Liu C
    Cogn Neurodyn; 2018 Dec; 12(6):569-581. PubMed ID: 30483365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase lag index-based graph attention networks for detecting driving fatigue.
    Wang Z; Zhao Y; He Y; Zhang J
    Rev Sci Instrum; 2021 Sep; 92(9):094105. PubMed ID: 34598529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An EEG Channel Selection Framework for Driver Drowsiness Detection via Interpretability Guidance.
    Zhou X; Lin D; Jia Z; Xiao J; Liu C; Zhai L; Liu Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of driver drowsiness using electroencephalogram signals based on multiple functional brain networks.
    Chen J; Wang H; Hua C
    Int J Psychophysiol; 2018 Nov; 133():120-130. PubMed ID: 30081067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A portable device for real time drowsiness detection using novel active dry electrode system.
    Tsai PY; Hu W; Kuo TB; Shyu LY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3775-8. PubMed ID: 19964814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensor-Based EEG Network Formation and Feature Extraction for Cross-Session Driving Drowsiness Detection.
    Shen M; Zou B; Li X; Zheng Y; Zhang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():252-255. PubMed ID: 33017976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Stream Spatial-Temporal Graph Convolutional Networks for Driver Drowsiness Detection.
    Bai J; Yu W; Xiao Z; Havyarimana V; Regan AC; Jiang H; Jiao L
    IEEE Trans Cybern; 2022 Dec; 52(12):13821-13833. PubMed ID: 34606468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of single-channel electroencephalography signal analysis model for real-time drowsiness detection : SEEGDD.
    Balam VP; Chinara S
    Phys Eng Sci Med; 2021 Sep; 44(3):713-726. PubMed ID: 34057671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Drowsiness among Drivers Using Novel Deep Convolutional Neural Network Model.
    Majeed F; Shafique U; Safran M; Alfarhood S; Ashraf I
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-Subject Zero Calibration Driver's Drowsiness Detection: Exploring Spatiotemporal Image Encoding of EEG Signals for Convolutional Neural Network Classification.
    Paulo JR; Pires G; Nunes UJ
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():905-915. PubMed ID: 33979288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring alert and drowsy states by modeling EEG source nonstationarity.
    Hsu SH; Jung TP
    J Neural Eng; 2017 Oct; 14(5):056012. PubMed ID: 28627505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driving drowsiness detection using spectral signatures of EEG-based neurophysiology.
    Arif S; Munawar S; Ali H
    Front Physiol; 2023; 14():1153268. PubMed ID: 37064914
    [No Abstract]   [Full Text] [Related]  

  • 16. Drowsiness detection using portable wireless EEG.
    Gangadharan K S; Vinod AP
    Comput Methods Programs Biomed; 2022 Feb; 214():106535. PubMed ID: 34861615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using long short term memory and convolutional neural networks for driver drowsiness detection.
    Quddus A; Shahidi Zandi A; Prest L; Comeau FJE
    Accid Anal Prev; 2021 Jun; 156():106107. PubMed ID: 33848710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Context-Aware EEG Headset System for Early Detection of Driver Drowsiness.
    Li G; Chung WY
    Sensors (Basel); 2015 Aug; 15(8):20873-93. PubMed ID: 26308002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability.
    Awais M; Badruddin N; Drieberg M
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28858220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males.
    Chen J; Wang H; Wang Q; Hua C
    Neuropsychologia; 2019 Jun; 129():200-211. PubMed ID: 30995455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.