BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38010977)

  • 1. High Thermoelectric Performance in Phonon-Glass Electron-Crystal Like AgSbTe
    Taneja V; Das S; Dolui K; Ghosh T; Bhui A; Bhat U; Kedia DK; Pal K; Datta R; Biswas K
    Adv Mater; 2024 Feb; 36(6):e2307058. PubMed ID: 38010977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hg Doping Induced Reduction in Structural Disorder Enhances the Thermoelectric Performance in AgSbTe
    Bhui A; Das S; Arora R; Bhat U; Dutta P; Ghosh T; Pathak R; Datta R; Waghmare UV; Biswas K
    J Am Chem Soc; 2023 Nov; 145(46):25392-25400. PubMed ID: 37942795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe
    Roychowdhury S; Ghosh T; Arora R; Samanta M; Xie L; Singh NK; Soni A; He J; Waghmare UV; Biswas K
    Science; 2021 Feb; 371(6530):722-727. PubMed ID: 33574210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2.
    Ma J; Delaire O; May AF; Carlton CE; McGuire MA; VanBebber LH; Abernathy DL; Ehlers G; Hong T; Huq A; Tian W; Keppens VM; Shao-Horn Y; Sales BC
    Nat Nanotechnol; 2013 Jun; 8(6):445-51. PubMed ID: 23728075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-solutioned homojunction nanoplates with disordered lattice: a promising approach toward "phonon glass electron crystal" thermoelectric materials.
    Xiao C; Xu J; Cao B; Li K; Kong M; Xie Y
    J Am Chem Soc; 2012 May; 134(18):7971-7. PubMed ID: 22524562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance.
    Sarkar D; Bhui A; Maria I; Dutta M; Biswas K
    Chem Soc Rev; 2024 Jun; 53(12):6100-6149. PubMed ID: 38717749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe.
    Roychowdhury S; Jana MK; Pan J; Guin SN; Sanyal D; Waghmare UV; Biswas K
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):4043-4047. PubMed ID: 29488301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain-Induced Ultrahigh Electron Mobility and Thermoelectric Figure of Merit in Monolayer α-Te.
    Ma J; Meng F; He J; Jia Y; Li W
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43901-43910. PubMed ID: 32870654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-type organic thermoelectrics: demonstration of ZT > 0.3.
    Liu J; van der Zee B; Alessandri R; Sami S; Dong J; Nugraha MI; Barker AJ; Rousseva S; Qiu L; Qiu X; Klasen N; Chiechi RC; Baran D; Caironi M; Anthopoulos TD; Portale G; Havenith RWA; Marrink SJ; Hummelen JC; Koster LJA
    Nat Commun; 2020 Nov; 11(1):5694. PubMed ID: 33173050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Thermoelectric Performance of Mg-Doped AgSbTe
    Du R; Zhang G; Hao M; Xuan X; Peng P; Fan P; Si H; Yang G; Wang C
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36749154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistically Optimized Electron and Phonon Transport of Polycrystalline BiCuSeO
    Yin Z; Liu Z; Yu Y; Zhang C; Chen P; Zhao J; He P; Guo X
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57638-57645. PubMed ID: 34817977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge Compensation Modulation of the Thermoelectric Properties in AgSbTe
    Li K; Li Z; Yang L; Xiao C; Xie Y
    Inorg Chem; 2019 Jul; 58(14):9205-9212. PubMed ID: 31251597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Thermoelectric Performance of AgSbTe
    Chen J; Li T; Dai H; Wang C; Chen Z; Wu J; Wang S; Cheng X; Xue R
    ACS Appl Mater Interfaces; 2024 Jun; ():. PubMed ID: 38940362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Thermoelectric Properties through Compositional Engineering in Ag-Deficient AgSbTe
    Prado-Gonjal J; García-Calvo E; Gainza J; Durá OJ; Dejoie C; Nemes NM; Martínez JL; Alonso JA; Serrano-Sánchez F
    ACS Appl Electron Mater; 2024 May; 6(5):2969-2977. PubMed ID: 38828031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced thermoelectric performance of In2O3-based ceramics via Nanostructuring and Point Defect Engineering.
    Lan JL; Liu Y; Lin YH; Nan CW; Cai Q; Yang X
    Sci Rep; 2015 Jan; 5():7783. PubMed ID: 25586762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance bulk thermoelectrics with all-scale hierarchical architectures.
    Biswas K; He J; Blum ID; Wu CI; Hogan TP; Seidman DN; Dravid VP; Kanatzidis MG
    Nature; 2012 Sep; 489(7416):414-8. PubMed ID: 22996556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppressing Ag
    Gong Z; Saglik K; Wu J; Suwardi A; Cao J
    Nanoscale; 2023 Nov; 15(45):18283-18290. PubMed ID: 37941461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu
    Zhang Q; Ti Z; Zhu Y; Zhang Y; Cao Y; Li S; Wang M; Li D; Zou B; Hou Y; Wang P; Tang G
    ACS Nano; 2021 Dec; 15(12):19345-19356. PubMed ID: 34734696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon-glass electron-crystals in ZnO-multiwalled carbon nanotube nanocomposites.
    Nam WH; Kim BB; Lim YS; Dae KS; Seo WS; Park HH; Lee JY
    Nanoscale; 2017 Sep; 9(35):12941-12948. PubMed ID: 28831489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.