BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38011496)

  • 1. RUPE-phospho: Rapid Ultrasound-Assisted Peptide-Identification-Enhanced Phosphoproteomics Workflow for Microscale Samples.
    Huang Y; Shao X; Liu Y; Yan K; Ying W; He F; Wang D
    Anal Chem; 2023 Dec; 95(49):17974-17980. PubMed ID: 38011496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A streamlined tandem tip-based workflow for sensitive nanoscale phosphoproteomics.
    Tsai CF; Wang YT; Hsu CC; Kitata RB; Chu RK; Velickovic M; Zhao R; Williams SM; Chrisler WB; Jorgensen ML; Moore RJ; Zhu Y; Rodland KD; Smith RD; Wasserfall CH; Shi T; Liu T
    Commun Biol; 2023 Jan; 6(1):70. PubMed ID: 36653408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Rapid and Universal Workflow for Label-Free-Quantitation-Based Proteomic and Phosphoproteomic Studies in Cereals.
    He M; Wang J; Herold S; Xi L; Schulze WX
    Curr Protoc; 2022 Jun; 2(6):e425. PubMed ID: 35674286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling.
    Hsu CC; Arrington JV; Tao WA
    Methods Mol Biol; 2021; 2358():93-103. PubMed ID: 34270048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated strategy for highly sensitive phosphoproteome analysis from low micrograms of protein samples.
    Chen W; Chen L; Tian R
    Analyst; 2018 Jul; 143(15):3693-3701. PubMed ID: 29978859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Proteome and Phosphoproteome Profiling in Magnaporthe oryzae.
    Michna T; Tenzer S
    Methods Mol Biol; 2021; 2356():109-119. PubMed ID: 34236681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis.
    Urban J
    Anal Chim Acta; 2022 Mar; 1199():338857. PubMed ID: 35227377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized Workflow for Proteomics and Phosphoproteomics With Limited Tissue Samples.
    Hu M; Wang Y
    Curr Protoc; 2024 Apr; 4(4):e1028. PubMed ID: 38646944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and quantitation of signal molecule-dependent protein phosphorylation.
    Groen A; Thomas L; Lilley K; Marondedze C
    Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sample Preparation and Phosphopeptide Enrichment for Plant Phosphoproteomics via Label-Free Mass Spectrometry.
    Marzban G; Sulaj E
    Methods Mol Biol; 2024; 2787():293-303. PubMed ID: 38656498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A data-independent acquisition-based global phosphoproteomics system enables deep profiling.
    Kitata RB; Choong WK; Tsai CF; Lin PY; Chen BS; Chang YC; Nesvizhskii AI; Sung TY; Chen YJ
    Nat Commun; 2021 May; 12(1):2539. PubMed ID: 33953186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics.
    Chang A; Leutert M; Rodriguez-Mias RA; Villén J
    J Proteome Res; 2023 Jun; 22(6):1868-1880. PubMed ID: 37097255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows.
    Aasebø E; Mjaavatten O; Vaudel M; Farag Y; Selheim F; Berven F; Bruserud Ø; Hernandez-Valladares M
    J Proteomics; 2016 Aug; 145():214-225. PubMed ID: 27107777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Integrated Workflow for Global, Glyco-, and Phospho-proteomic Analysis of Tumor Tissues.
    Zhou Y; Lih TM; Yang G; Chen SY; Chen L; Chan DW; Zhang H; Li QK
    Anal Chem; 2020 Jan; 92(2):1842-1849. PubMed ID: 31859488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle.
    Kettenbach AN; Sano H; Keller SR; Lienhard GE; Gerber SA
    J Proteomics; 2015 Jan; 114():48-60. PubMed ID: 25463755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteomic Sample Preparation for Global Phosphorylation Profiling of a Fungal Pathogen.
    Ball B; Krieger JR; Geddes-McAlister J
    Methods Mol Biol; 2022; 2456():141-151. PubMed ID: 35612740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.