BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38011562)

  • 41. ATF3 and Fra1 have opposite functions in JNK- and ERK-dependent DNA damage responses.
    Hamdi M; Popeijus HE; Carlotti F; Janssen JM; van der Burgt C; Cornelissen-Steijger P; van de Water B; Hoeben RC; Matsuo K; van Dam H
    DNA Repair (Amst); 2008 Mar; 7(3):487-96. PubMed ID: 18249159
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives.
    Manco G; Lacerra G; Porzio E; Catara G
    Biomolecules; 2022 Mar; 12(3):. PubMed ID: 35327636
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation.
    O'Sullivan J; Tedim Ferreira M; Gagné JP; Sharma AK; Hendzel MJ; Masson JY; Poirier GG
    Nat Commun; 2019 Mar; 10(1):1182. PubMed ID: 30862789
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dictyostelium as a Model to Assess Site-Specific ADP-Ribosylation Events.
    Kolb AL; Hsu DW; Wallis ABA; Ura S; Rakhimova A; Pears CJ; Lakin ND
    Methods Mol Biol; 2018; 1813():125-148. PubMed ID: 30097865
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Site-specific ADP-ribosylation of histone H2B in response to DNA double strand breaks.
    Rakhimova A; Ura S; Hsu DW; Wang HY; Pears CJ; Lakin ND
    Sci Rep; 2017 Mar; 7():43750. PubMed ID: 28252050
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mono-ADP-ribosylation of the G protein betagamma dimer is modulated by hormones and inhibited by Arf6.
    Dani N; Mayo E; Stilla A; Marchegiani A; Di Paola S; Corda D; Di Girolamo M
    J Biol Chem; 2011 Feb; 286(8):5995-6005. PubMed ID: 21148312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ART2, a T cell surface mono-ADP-ribosyltransferase, generates extracellular poly(ADP-ribose).
    Morrison AR; Moss J; Stevens LA; Evans JE; Farrell C; Merithew E; Lambright DG; Greiner DL; Mordes JP; Rossini AA; Bortell R
    J Biol Chem; 2006 Nov; 281(44):33363-72. PubMed ID: 16931513
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glucagon like-peptide-1 receptor is covalently modified by endogenous mono-ADP-ribosyltransferase.
    Deželak M; Bavec A
    Mol Biol Rep; 2012 Apr; 39(4):4375-81. PubMed ID: 21901419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Overview of the mammalian ADP-ribosyl-transferases clostridia toxin-like (ARTCs) family.
    Di Girolamo M; Fabrizio G
    Biochem Pharmacol; 2019 Sep; 167():86-96. PubMed ID: 31283932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mono-ADP-ribosylation: a tool for modulating immune response and cell signaling.
    Corda D; Di Girolamo M
    Sci STKE; 2002 Dec; 2002(163):pe53. PubMed ID: 12488509
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MARylation meets ubiquitination in the ART of plant immunity.
    Gough C; Sadanandom A
    Mol Cell; 2021 Nov; 81(22):4572-4574. PubMed ID: 34798042
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Helicobacter pylori induces mono-(adenosine 5'-diphosphate)-ribosylation in human gastric adenocarcinoma.
    Akai T; Nabeya Y; Yahiro K; Morinaga N; Mitsuhashi K; Inoue M; Sakamoto A; Ochiai T; Noda M
    Int J Oncol; 2006 Oct; 29(4):965-72. PubMed ID: 16964392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interplay between TAp73 Protein and Selected Activator Protein-1 (AP-1) Family Members Promotes AP-1 Target Gene Activation and Cellular Growth.
    Subramanian D; Bunjobpol W; Sabapathy K
    J Biol Chem; 2015 Jul; 290(30):18636-49. PubMed ID: 26018080
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ADP-ribosyltransferase PARP11 modulates the interferon antiviral response by mono-ADP-ribosylating the ubiquitin E3 ligase β-TrCP.
    Guo T; Zuo Y; Qian L; Liu J; Yuan Y; Xu K; Miao Y; Feng Q; Chen X; Jin L; Zhang L; Dong C; Xiong S; Zheng H
    Nat Microbiol; 2019 Nov; 4(11):1872-1884. PubMed ID: 30988430
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ENPP1 processes protein ADP-ribosylation in vitro.
    Palazzo L; Daniels CM; Nettleship JE; Rahman N; McPherson RL; Ong SE; Kato K; Nureki O; Leung AK; Ahel I
    FEBS J; 2016 Sep; 283(18):3371-88. PubMed ID: 27406238
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mono-ADP-ribosylation of H3R117 traps 5mC hydroxylase TET1 to impair demethylation of tumor suppressor gene TFPI2.
    Li M; Tang Y; Li Q; Xiao M; Yang Y; Wang Y
    Oncogene; 2019 May; 38(18):3488-3503. PubMed ID: 30651599
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The chloroethylating anticancer drug ACNU induces FRA1 that is involved in drug resistance of glioma cells.
    Meise R; Tomicic MT; Kaina B; Christmann M
    Biochim Biophys Acta; 2012 Jul; 1823(7):1199-207. PubMed ID: 22609303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells.
    Roper SJ; Chrysanthou S; Senner CE; Sienerth A; Gnan S; Murray A; Masutani M; Latos P; Hemberger M
    Nucleic Acids Res; 2014 Aug; 42(14):8914-27. PubMed ID: 25034692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism of threonine ADP-ribosylation of F-actin by a Tc toxin.
    Belyy A; Lindemann F; Roderer D; Funk J; Bardiaux B; Protze J; Bieling P; Oschkinat H; Raunser S
    Nat Commun; 2022 Jul; 13(1):4202. PubMed ID: 35858890
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Restoration of IRF1-dependent anticancer effects by MEK inhibition in human cancer cells.
    AbuSara N; Razavi S; Derwish L; Komatsu Y; Licursi M; Hirasawa K
    Cancer Lett; 2015 Feb; 357(2):575-81. PubMed ID: 25497010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.