BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38011562)

  • 61. PARPs and ADP-Ribosylation in Chronic Inflammation: A Focus on Macrophages.
    Santinelli-Pestana DV; Aikawa E; Singh SA; Aikawa M
    Pathogens; 2023 Jul; 12(7):. PubMed ID: 37513811
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The alpha 7 integrin as a target protein for cell surface mono-ADP-ribosylation in muscle cells.
    Zolkiewska A; Moss J
    Adv Exp Med Biol; 1997; 419():297-303. PubMed ID: 9193669
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hydrolysis of ADP-Ribosylation by Macrodomains.
    Posavec Marjanovic M; Jankevicius G; Ahel I
    Methods Mol Biol; 2018; 1813():215-223. PubMed ID: 30097870
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD)-Inducible Poly-ADP-Ribose Polymerase (TIPARP/PARP7) Catalytic Mutant Mice (TiparpH532A) Exhibit Increased Sensitivity to TCDD-Induced Hepatotoxicity and Lethality.
    Hutin D; Long AS; Sugamori K; Shao P; Singh SK; Rasmussen M; Olafsen NE; Pettersen S; Grimaldi G; Grant DM; Matthews J
    Toxicol Sci; 2021 Aug; 183(1):154-169. PubMed ID: 34129049
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Endogenous ADP-ribosylation for eukaryotic elongation factor 2: evidence of two different sites and reactions.
    Bektaş M; Nurten R; Ergen K; Bermek E
    Cell Biochem Funct; 2006; 24(4):369-80. PubMed ID: 16142694
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Discovery of tricyclic PARP7 inhibitors with high potency, selectivity, and oral bioavailability.
    Xu J; Zhao A; Chen D; Wang J; Ma J; Qing L; Li Y; Fang H; He H; Pan W; Zhang S
    Eur J Med Chem; 2024 Feb; 266():116160. PubMed ID: 38277917
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of Poly(ADP-Ribose) Polymerase Macrodomain Inhibitors Using an AlphaScreen Protocol.
    Ekblad T; Verheugd P; Lindgren AE; Nyman T; Elofsson M; Schüler H
    SLAS Discov; 2018 Apr; 23(4):353-362. PubMed ID: 29316839
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inhibition of PARP1 Increases IRF-dependent Gene Transcription in Jurkat Cells.
    Wang C; Du M; Huang D; Huang K; Huang K
    Curr Med Sci; 2019 Jun; 39(3):356-362. PubMed ID: 31209803
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mechanistic overview of ADP-ribosylation reactions.
    Sung VM
    Biochimie; 2015 Jun; 113():35-46. PubMed ID: 25828806
    [TBL] [Abstract][Full Text] [Related]  

  • 70. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1.
    Di Paola S; Micaroni M; Di Tullio G; Buccione R; Di Girolamo M
    PLoS One; 2012; 7(6):e37352. PubMed ID: 22701565
    [TBL] [Abstract][Full Text] [Related]  

  • 71. ADP-ribosylarginine hydrolases and ADP-ribosyltransferases. Partners in ADP-ribosylation cycles.
    Moss J; Zolkiewska A; Okazaki I
    Adv Exp Med Biol; 1997; 419():25-33. PubMed ID: 9193633
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Endogenous protein mono-ADP-ribosylation in Arabidopsis thaliana.
    Wang H; Liang Q; Cao K; Ge X
    Planta; 2011 Jun; 233(6):1287-92. PubMed ID: 21519881
    [TBL] [Abstract][Full Text] [Related]  

  • 73. FOS-like antigen 1 is highly expressed in human psoriasis tissues and promotes the growth of HaCaT cells in vitro.
    Zhu W; Li J; Su J; Li J; Li J; Deng B; Shi Q; Zhou Y; Chen X
    Mol Med Rep; 2014 Nov; 10(5):2489-94. PubMed ID: 25175497
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structural and biochemical insights into the molecular mechanism of TRPT1 for nucleic acid ADP-ribosylation.
    Yang X; Wang J; Li S; Li X; Gong J; Yan Z; Zhou H; Wu C; Liu X
    Nucleic Acids Res; 2023 Aug; 51(14):7649-7665. PubMed ID: 37334830
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Proteomic Characterization of the Heart and Skeletal Muscle Reveals Widespread Arginine ADP-Ribosylation by the ARTC1 Ectoenzyme.
    Leutert M; Menzel S; Braren R; Rissiek B; Hopp AK; Nowak K; Bisceglie L; Gehrig P; Li H; Zolkiewska A; Koch-Nolte F; Hottiger MO
    Cell Rep; 2018 Aug; 24(7):1916-1929.e5. PubMed ID: 30110646
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Separation of the 24 kDa substrate for botulinum C3 ADP-ribosyltransferase and the cholera toxin ADP-ribosylation factor.
    Tsai SC; Adamik R; Moss J; Aktories K
    Biochem Biophys Res Commun; 1988 May; 152(3):957-61. PubMed ID: 3132159
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cell-surface ADP-ribosylation of fibroblast growth factor-2 by an arginine-specific ADP-ribosyltransferase.
    Jones EM; Baird A
    Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):173-7. PubMed ID: 9173879
    [TBL] [Abstract][Full Text] [Related]  

  • 78. ADP-ribosylation of Rho proteins by Clostridium botulinum exoenzyme C3 is influenced by phosphorylation of Rho-associated factors.
    Fritz G; Aktories K
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):133-9. PubMed ID: 8198524
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Differentiation-induced increase in Clostridium botulinum C3 exoenzyme-catalyzed ADP-ribosylation of the small GTP-binding protein Rho.
    Fritz G; Just I; Wollenberg P; Aktories K
    Eur J Biochem; 1994 Aug; 223(3):909-16. PubMed ID: 8055968
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair.
    Van Meter M; Mao Z; Gorbunova V; Seluanov A
    Aging (Albany NY); 2011 Sep; 3(9):829-35. PubMed ID: 21946623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.