These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38011645)
1. Snow, fire and drought: How alpine and treeline soil seed banks are affected by simulated climate change. Vázquez-Ramírez J; Venn SE Ann Bot; 2023 Nov; ():. PubMed ID: 38011645 [TBL] [Abstract][Full Text] [Related]
2. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank. Hoyle GL; Venn SE; Steadman KJ; Good RB; McAuliffe EJ; Williams ER; Nicotra AB Glob Chang Biol; 2013 May; 19(5):1549-61. PubMed ID: 23505066 [TBL] [Abstract][Full Text] [Related]
3. Limited prospects for future alpine treeline advance in the Canadian Rocky Mountains. Davis EL; Gedalof Z Glob Chang Biol; 2018 Oct; 24(10):4489-4504. PubMed ID: 29856111 [TBL] [Abstract][Full Text] [Related]
4. Direct and indirect effects of temperature and precipitation on alpine seed banks in the Tibetan Plateau. Ma M; Collins SL; Du G Ecol Appl; 2020 Jul; 30(5):e02096. PubMed ID: 32080921 [TBL] [Abstract][Full Text] [Related]
5. Precipitation controls seed bank size and its role in alpine meadow community regeneration with increasing altitude. An H; Zhao Y; Ma M Glob Chang Biol; 2020 Oct; 26(10):5767-5777. PubMed ID: 33463902 [TBL] [Abstract][Full Text] [Related]
6. Alpine treeline ecotone stasis in the face of recent climate change and disturbance by fire. Naccarella A; Morgan JW; Cutler SC; Venn SE PLoS One; 2020; 15(4):e0231339. PubMed ID: 32275738 [TBL] [Abstract][Full Text] [Related]
7. Climate warming could increase recruitment success in glacier foreland plants. Mondoni A; Pedrini S; Bernareggi G; Rossi G; Abeli T; Probert RJ; Ghitti M; Bonomi C; Orsenigo S Ann Bot; 2015 Nov; 116(6):907-16. PubMed ID: 26133689 [TBL] [Abstract][Full Text] [Related]
8. Effects of climate warming and prolonged snow cover on phenology of the early life history stages of four alpine herbs on the southeastern Tibetan Plateau. Wang G; Baskin CC; Baskin JM; Yang X; Liu G; Ye X; Zhang X; Huang Z Am J Bot; 2018 Jun; 105(6):967-976. PubMed ID: 29927486 [TBL] [Abstract][Full Text] [Related]
9. Biotic and abiotic drivers of tree seedling recruitment across an alpine treeline ecotone. Frei ER; Bianchi E; Bernareggi G; Bebi P; Dawes MA; Brown CD; Trant AJ; Mamet SD; Rixen C Sci Rep; 2018 Jul; 8(1):10894. PubMed ID: 30022032 [TBL] [Abstract][Full Text] [Related]
10. Seed-bank structure and plant-recruitment conditions regulate the dynamics of a grassland-shrubland Chihuahuan ecotone. Moreno-de Las Heras M; Turnbull L; Wainwright J Ecology; 2016 Sep; 97(9):2303-2318. PubMed ID: 27859083 [TBL] [Abstract][Full Text] [Related]
11. Resilience of Mediterranean shrubland to a severe drought episode: the role of seed bank and seedling emergence. del Cacho M; Lloret F Plant Biol (Stuttg); 2012 May; 14(3):458-66. PubMed ID: 22136559 [TBL] [Abstract][Full Text] [Related]
12. Germination potential of baldcypress (Taxodium distichum) swamp soil seed bank along geographical gradients. Lei T; Middleton B Sci Total Environ; 2021 Mar; 759():143484. PubMed ID: 33203558 [TBL] [Abstract][Full Text] [Related]
13. Alpine community recruitment potential is determined by habitat attributes in the alpine ecosystems of the Himalaya-Hengduan Mountains, SW China. Chen X; Qian L; Zhang Y; Shi H; Sun H; Chen J Ecol Evol; 2021 Dec; 11(23):17397-17408. PubMed ID: 34938516 [TBL] [Abstract][Full Text] [Related]
14. [Tree seedling distribution, regeneration mechanism and response to climate change in alpine treeline ecotone]. Shao JY; DU JH; Li SF; Huang YX; Liang WN; Liao JQ Ying Yong Sheng Tai Xue Bao; 2019 Aug; 30(8):2854-2864. PubMed ID: 31418212 [TBL] [Abstract][Full Text] [Related]
15. Factors driving species assemblage in Mediterranean soil seed banks: from the large to the fine scale. Peralta AM; Sánchez AM; Luzuriaga AL; Escudero A Ann Bot; 2016 Jun; 117(7):1221-8. PubMed ID: 27085181 [TBL] [Abstract][Full Text] [Related]
16. Are trade-offs in plant resprouting manifested in community seed banks? Clarke PJ; Dorji K Ecology; 2008 Jul; 89(7):1850-8. PubMed ID: 18705372 [TBL] [Abstract][Full Text] [Related]
17. Dormancy cycling and persistence of seeds in soil of a cold desert halophyte shrub. Cao D; Baskin CC; Baskin JM; Yang F; Huang Z Ann Bot; 2014 Jan; 113(1):171-9. PubMed ID: 24249808 [TBL] [Abstract][Full Text] [Related]
18. Comparative seed germination traits in alpine and subalpine grasslands: higher elevations are associated with warmer germination temperatures. Fernández-Pascual E; Jiménez-Alfaro B; Bueno Á Plant Biol (Stuttg); 2017 Jan; 19(1):32-40. PubMed ID: 27203239 [TBL] [Abstract][Full Text] [Related]
19. Evidence for physiological seed dormancy cycling in the woody shrub Asterolasia buxifolia and its ecological significance in fire-prone systems. Collette JC; Ooi MKJ Plant Biol (Stuttg); 2020 Jul; 22(4):745-749. PubMed ID: 32141176 [TBL] [Abstract][Full Text] [Related]
20. Seed dormancy and persistent sediment seed banks of ephemeral freshwater rock pools in the Australian monsoon tropics. Cross AT; Turner SR; Renton M; Baskin JM; Dixon KW; Merritt DJ Ann Bot; 2015 Apr; 115(5):847-59. PubMed ID: 25660345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]