These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38012013)

  • 1. Building Representation Learning Models for Antibody Comprehension.
    Barton J; Gaspariunas A; Galson JD; Leem J
    Cold Spring Harb Perspect Biol; 2024 Mar; 16(3):. PubMed ID: 38012013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery.
    Wilman W; Wróbel S; Bielska W; Deszynski P; Dudzic P; Jaszczyszyn I; Kaniewski J; Młokosiewicz J; Rouyan A; Satława T; Kumar S; Greiff V; Krawczyk K
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35830864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing Antibody Engineering through Synthetic Evolution and Machine Learning.
    Irvine EB; Reddy ST
    J Immunol; 2024 Jan; 212(2):235-243. PubMed ID: 38166249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-learning-guided directed evolution for protein engineering.
    Yang KK; Wu Z; Arnold FH
    Nat Methods; 2019 Aug; 16(8):687-694. PubMed ID: 31308553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation.
    Narayanan H; Dingfelder F; Butté A; Lorenzen N; Sokolov M; Arosio P
    Trends Pharmacol Sci; 2021 Mar; 42(3):151-165. PubMed ID: 33500170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the chaos game representation of proteins for applications in machine learning models: prediction of antibody affinity and specificity as a case study.
    Arsiccio A; Stratta L; Menzen T
    J Mol Model; 2023 Nov; 29(12):377. PubMed ID: 37968495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications and challenges in designing VHH-based bispecific antibodies: leveraging machine learning solutions.
    Mullin M; McClory J; Haynes W; Grace J; Robertson N; van Heeke G
    MAbs; 2024; 16(1):2341443. PubMed ID: 38666503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward generalizable prediction of antibody thermostability using machine learning on sequence and structure features.
    Harmalkar A; Rao R; Richard Xie Y; Honer J; Deisting W; Anlahr J; Hoenig A; Czwikla J; Sienz-Widmann E; Rau D; Rice AJ; Riley TP; Li D; Catterall HB; Tinberg CE; Gray JJ; Wei KY
    MAbs; 2023; 15(1):2163584. PubMed ID: 36683173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning to navigate fitness landscapes for protein engineering.
    Freschlin CR; Fahlberg SA; Romero PA
    Curr Opin Biotechnol; 2022 Jun; 75():102713. PubMed ID: 35413604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space.
    Makowski EK; Kinnunen PC; Huang J; Wu L; Smith MD; Wang T; Desai AA; Streu CN; Zhang Y; Zupancic JM; Schardt JS; Linderman JJ; Tessier PM
    Nat Commun; 2022 Jul; 13(1):3788. PubMed ID: 35778381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simplifying complex antibody engineering using machine learning.
    Makowski EK; Chen HT; Tessier PM
    Cell Syst; 2023 Aug; 14(8):667-675. PubMed ID: 37591204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological Profiling for Drug Discovery in the Era of Deep Learning.
    Tang Q; Ratnayake R; Seabra G; Jiang Z; Fang R; Cui L; Ding Y; Kahveci T; Bian J; Li C; Luesch H; Li Y
    ArXiv; 2024 Jan; ():. PubMed ID: 38168460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing antibodies as therapeutics.
    Carter PJ; Rajpal A
    Cell; 2022 Jul; 185(15):2789-2805. PubMed ID: 35868279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning models for drug-target interactions: current knowledge and future directions.
    D'Souza S; Prema KV; Balaji S
    Drug Discov Today; 2020 Apr; 25(4):748-756. PubMed ID: 32171918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meta learning addresses noisy and under-labeled data in machine learning-guided antibody engineering.
    Minot M; Reddy ST
    Cell Syst; 2024 Jan; 15(1):4-18.e4. PubMed ID: 38194961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning directed drug formulation development.
    Bannigan P; Aldeghi M; Bao Z; Häse F; Aspuru-Guzik A; Allen C
    Adv Drug Deliv Rev; 2021 Aug; 175():113806. PubMed ID: 34019959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody complementarity determining region design using high-capacity machine learning.
    Liu G; Zeng H; Mueller J; Carter B; Wang Z; Schilz J; Horny G; Birnbaum ME; Ewert S; Gifford DK
    Bioinformatics; 2020 Apr; 36(7):2126-2133. PubMed ID: 31778140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating antibody discovery and design with artificial intelligence: Recent advances and prospects.
    Bai G; Sun C; Guo Z; Wang Y; Zeng X; Su Y; Zhao Q; Ma B
    Semin Cancer Biol; 2023 Oct; 95():13-24. PubMed ID: 37355214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.