These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38012074)
1. Synthesis of Trifluoromethylated Monoterpenes by an Engineered Cytochrome P450. Yuan F; Ding J; Sun Y; Liang J; Luo Y; Yu Y Chemistry; 2024 Feb; 30(10):e202302936. PubMed ID: 38012074 [TBL] [Abstract][Full Text] [Related]
2. Increased carvone production in Escherichia coli by balancing limonene conversion enzyme expression via targeted quantification concatamer proteome analysis. Yoshida E; Kojima M; Suzuki M; Matsuda F; Shimbo K; Onuki A; Nishio Y; Usuda Y; Kondo A; Ishii J Sci Rep; 2021 Nov; 11(1):22126. PubMed ID: 34764337 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Alonso-Gutierrez J; Chan R; Batth TS; Adams PD; Keasling JD; Petzold CJ; Lee TS Metab Eng; 2013 Sep; 19():33-41. PubMed ID: 23727191 [TBL] [Abstract][Full Text] [Related]
4. Non-natural olefin cyclopropanation catalyzed by diverse cytochrome P450s and other hemoproteins. Heel T; McIntosh JA; Dodani SC; Meyerowitz JT; Arnold FH Chembiochem; 2014 Nov; 15(17):2556-62. PubMed ID: 25294253 [TBL] [Abstract][Full Text] [Related]
5. Complete integration of carbene-transfer chemistry into biosynthesis. Huang J; Quest A; Cruz-Morales P; Deng K; Pereira JH; Van Cura D; Kakumanu R; Baidoo EEK; Dan Q; Chen Y; Petzold CJ; Northen TR; Adams PD; Clark DS; Balskus EP; Hartwig JF; Mukhopadhyay A; Keasling JD Nature; 2023 May; 617(7960):403-408. PubMed ID: 37138074 [TBL] [Abstract][Full Text] [Related]
6. [Perillyl alcohol production by engineered heterologous mevalonate pathway in Escherichia coli]. Qin Z; Zhang R; Yu J Sheng Wu Gong Cheng Xue Bao; 2018 May; 34(5):722-730. PubMed ID: 29893080 [TBL] [Abstract][Full Text] [Related]
7. Monoterpene biosynthesis pathway construction in Escherichia coli. Carter OA; Peters RJ; Croteau R Phytochemistry; 2003 Sep; 64(2):425-33. PubMed ID: 12943759 [TBL] [Abstract][Full Text] [Related]
8. Enantio- and Diastereoenriched Enzymatic Synthesis of 1,2,3-Polysubstituted Cyclopropanes from ( Mao R; Wackelin DJ; Jamieson CS; Rogge T; Gao S; Das A; Taylor DM; Houk KN; Arnold FH J Am Chem Soc; 2023 Jul; 145(29):16176-16185. PubMed ID: 37433085 [TBL] [Abstract][Full Text] [Related]
9. Recent developments in the application of P450 based biocatalysts. Wei Y; Ang EL; Zhao H Curr Opin Chem Biol; 2018 Apr; 43():1-7. PubMed ID: 29100098 [TBL] [Abstract][Full Text] [Related]
10. Molecular cloning and characterization of a Perilla frutescens cytochrome P450 enzyme that catalyzes the later steps of perillaldehyde biosynthesis. Fujiwara Y; Ito M Phytochemistry; 2017 Feb; 134():26-37. PubMed ID: 27890582 [TBL] [Abstract][Full Text] [Related]
11. Microbial Synthesis of Myrcene by Metabolically Engineered Escherichia coli. Kim EM; Eom JH; Um Y; Kim Y; Woo HM J Agric Food Chem; 2015 May; 63(18):4606-12. PubMed ID: 25909988 [TBL] [Abstract][Full Text] [Related]
12. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Coelho PS; Wang ZJ; Ener ME; Baril SA; Kannan A; Arnold FH; Brustad EM Nat Chem Biol; 2013 Aug; 9(8):485-7. PubMed ID: 23792734 [TBL] [Abstract][Full Text] [Related]
13. Diverse Engineered Heme Proteins Enable Stereodivergent Cyclopropanation of Unactivated Alkenes. Knight AM; Kan SBJ; Lewis RD; Brandenberg OF; Chen K; Arnold FH ACS Cent Sci; 2018 Mar; 4(3):372-377. PubMed ID: 29632883 [TBL] [Abstract][Full Text] [Related]
14. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Coelho PS; Brustad EM; Kannan A; Arnold FH Science; 2013 Jan; 339(6117):307-10. PubMed ID: 23258409 [TBL] [Abstract][Full Text] [Related]
15. Effectiveness of recombinant Escherichia coli on the production of (R)-(+)-perillyl alcohol. Sun C; Dong X; Zhang R; Xie C BMC Biotechnol; 2021 Jan; 21(1):3. PubMed ID: 33419424 [TBL] [Abstract][Full Text] [Related]
16. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer. Yang Y; Arnold FH Acc Chem Res; 2021 Mar; 54(5):1209-1225. PubMed ID: 33491448 [TBL] [Abstract][Full Text] [Related]
17. Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Cornelissen S; Julsing MK; Volmer J; Riechert O; Schmid A; Bühler B Biotechnol Bioeng; 2013 May; 110(5):1282-92. PubMed ID: 23239244 [TBL] [Abstract][Full Text] [Related]
18. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Karp F; Mihaliak CA; Harris JL; Croteau R Arch Biochem Biophys; 1990 Jan; 276(1):219-26. PubMed ID: 2297225 [TBL] [Abstract][Full Text] [Related]
19. Enhancing cytochrome P450-mediated non-natural cyclopropanation by mutation of a conserved second-shell residue. Gober JG; Rydeen AE; Schwochert TD; Gibson-O'Grady EJ; Brustad EM Biotechnol Bioeng; 2018 Jun; 115(6):1416-1426. PubMed ID: 29460311 [TBL] [Abstract][Full Text] [Related]
20. Highly Diastereo- and Enantioselective Synthesis of Nitrile-Substituted Cyclopropanes by Myoglobin-Mediated Carbene Transfer Catalysis. Chandgude AL; Fasan R Angew Chem Int Ed Engl; 2018 Nov; 57(48):15852-15856. PubMed ID: 30300955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]