These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 38012131)

  • 81. Near-Atomic Resolution Cryo-EM Image Reconstruction of RNA.
    Li S; Zhang K; Chiu W
    Methods Mol Biol; 2023; 2568():179-192. PubMed ID: 36227569
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps.
    Singharoy A; Teo I; McGreevy R; Stone JE; Zhao J; Schulten K
    Elife; 2016 Jul; 5():. PubMed ID: 27383269
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Building Protein Atomic Models from Cryo-EM Density Maps and Residue Co-Evolution.
    Bouvier G; Bardiaux B; Pellarin R; Rapisarda C; Nilges M
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139128
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Application of conformational space annealing to the protein structure modeling using cryo-EM maps.
    Park J; Joung I; Joo K; Lee J
    J Comput Chem; 2023 Nov; 44(30):2332-2346. PubMed ID: 37585026
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Dawning of a new era in TRP channel structural biology by cryo-electron microscopy.
    Madej MG; Ziegler CM
    Pflugers Arch; 2018 Feb; 470(2):213-225. PubMed ID: 29344776
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Accurate flexible refinement for atomic-level protein structure using cryo-EM density maps and deep learning.
    Zhang B; Liu D; Zhang Y; Shen HB; Zhang GJ
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152277
    [TBL] [Abstract][Full Text] [Related]  

  • 87. CryoFold 2.0: Cryo-EM Structure Determination with MELD.
    Chang L; Mondal A; MacCallum JL; Perez A
    J Phys Chem A; 2023 May; 127(17):3906-3913. PubMed ID: 37084537
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Cryo-EM structures of the TTYH family reveal a novel architecture for lipid interactions.
    Sukalskaia A; Straub MS; Deneka D; Sawicka M; Dutzler R
    Nat Commun; 2021 Aug; 12(1):4893. PubMed ID: 34385445
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Role of Protonation States in the Stability of Molecular Dynamics Simulations of High-Resolution Membrane Protein Structures.
    Lasham J; Djurabekova A; Zickermann V; Vonck J; Sharma V
    J Phys Chem B; 2024 Mar; 128(10):2304-2316. PubMed ID: 38430110
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Accurate flexible fitting of high-resolution protein structures into cryo-electron microscopy maps using coarse-grained pseudo-energy minimization.
    Zheng W
    Biophys J; 2011 Jan; 100(2):478-88. PubMed ID: 21244844
    [TBL] [Abstract][Full Text] [Related]  

  • 91. ATTRACT-EM: a new method for the computational assembly of large molecular machines using cryo-EM maps.
    de Vries SJ; Zacharias M
    PLoS One; 2012; 7(12):e49733. PubMed ID: 23251350
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs.
    Kern DM; Oh S; Hite RK; Brohawn SG
    Elife; 2019 Feb; 8():. PubMed ID: 30775971
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The accuracy of protein models automatically built into cryo-EM maps with ARP/wARP.
    Chojnowski G; Sobolev E; Heuser P; Lamzin VS
    Acta Crystallogr D Struct Biol; 2021 Feb; 77(Pt 2):142-150. PubMed ID: 33559604
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Analyses of subnanometer resolution cryo-EM density maps.
    Baker ML; Baker MR; Hryc CF; Dimaio F
    Methods Enzymol; 2010; 483():1-29. PubMed ID: 20888467
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM.
    Kalienkova V; Clerico Mosina V; Bryner L; Oostergetel GT; Dutzler R; Paulino C
    Elife; 2019 Feb; 8():. PubMed ID: 30785398
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Molecular Dynamics to Predict Cryo-EM: Capturing Transitions and Short-Lived Conformational States of Biomolecules.
    Nierzwicki Ł; Palermo G
    Front Mol Biosci; 2021; 8():641208. PubMed ID: 33884260
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Accurate Prediction of Protein Structural Flexibility by Deep Learning Integrating Intricate Atomic Structures and Cryo-EM Density Information.
    Song X; Bao L; Feng C; Huang Q; Zhang F; Gao X; Han R
    Nat Commun; 2024 Jul; 15(1):5538. PubMed ID: 38956032
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Progressive and accurate assembly of multi-domain protein structures from cryo-EM density maps.
    Zhou X; Li Y; Zhang C; Zheng W; Zhang G; Zhang Y
    bioRxiv; 2020 Oct; ():. PubMed ID: 33083802
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The importance of the membrane for biophysical measurements.
    Chorev DS; Robinson CV
    Nat Chem Biol; 2020 Dec; 16(12):1285-1292. PubMed ID: 33199903
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.