BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38012588)

  • 21. Coating 3D-Printed Bioceramics with Histatin Promotes Adhesion and Osteogenesis of Stem Cells.
    Wang D; Wang H; Yan Y; Wei N; Jaspers RT; Cao W; Lei X; Li S; Qi Y; Hu F; Lan H; Wu G
    Tissue Eng Part C Methods; 2023 Jul; 29(7):321-331. PubMed ID: 37416982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects.
    Deng C; Yang J; He H; Ma Z; Wang W; Zhang Y; Li T; He C; Wang J
    Biomater Sci; 2021 Jul; 9(14):4891-4903. PubMed ID: 34047307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Research on sintering process of tricalcium phosphate bone tissue engineering scaffold based on three-dimensional printing].
    Man X; Suo H; Liu J; Xu M; Wang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):112-118. PubMed ID: 32096384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Customized bioceramic scaffolds and metal meshes for challenging large-size mandibular bone defect regeneration and repair.
    Zhang B; Yin X; Zhang F; Hong Y; Qiu Y; Yang X; Li Y; Zhong C; Yang H; Gou Z
    Regen Biomater; 2023; 10():rbad057. PubMed ID: 37359729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological response of 3D-printed
    Tian Y; Ma H; Yu X; Feng B; Yang Z; Zhang W; Wu C
    Biomed Mater; 2023 Mar; 18(3):. PubMed ID: 36898162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction.
    Chen L; Deng C; Li J; Yao Q; Chang J; Wang L; Wu C
    Biomaterials; 2019 Mar; 196():138-150. PubMed ID: 29643002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seamless and early gap healing of osteochondral defects by autologous mosaicplasty combined with bioactive supramolecular nanofiber-enabled gelatin methacryloyl (BSN-GelMA) hydrogel.
    Wu H; Shang Y; Sun W; Ouyang X; Zhou W; Lu J; Yang S; Wei W; Yao X; Wang X; Zhang X; Chen Y; He Q; Yang Z; Ouyang H
    Bioact Mater; 2023 Jan; 19():88-102. PubMed ID: 35441114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(l-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells.
    Zhang K; He S; Yan S; Li G; Zhang D; Cui L; Yin J
    J Mater Chem B; 2016 Apr; 4(15):2628-2645. PubMed ID: 32263287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Composite Spheroid-Laden Bilayer Hydrogel for Engineering Three-Dimensional Osteochondral Tissue.
    Lee J; Lee E; Huh SJ; Kang JI; Park KM; Byun H; Lee S; Kim E; Shin H
    Tissue Eng Part A; 2024 Mar; 30(5-6):225-243. PubMed ID: 38062771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit.
    Deng T; Lv J; Pang J; Liu B; Ke J
    J Tissue Eng Regen Med; 2014 Jul; 8(7):546-56. PubMed ID: 22777833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Experimental study on tissue engineered cartilage constructed by three-dimensional bioprinted human adipose-derived stem cells combined with gelatin methacryloyl].
    Mu L; Zeng J; Huang Y; Lin Y; Jiang H; Teng L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):896-903. PubMed ID: 34308600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of three-dimensionally printed polycaprolactone/β-tricalcium phosphate scaffold on osteogenic differentiation of adipose tissue- and bone marrow-derived stem cells.
    Park H; Kim JS; Oh EJ; Kim TJ; Kim HM; Shim JH; Yoon WS; Huh JB; Moon SH; Kang SS; Chung HY
    Arch Craniofac Surg; 2018 Sep; 19(3):181-189. PubMed ID: 30282427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Biomimetic Biphasic Osteochondral Scaffold with Layer-Specific Release of Stem Cell Differentiation Inducers for the Reconstruction of Osteochondral Defects.
    Liu X; Wei Y; Xuan C; Liu L; Lai C; Chai M; Zhang Z; Wang L; Shi X
    Adv Healthc Mater; 2020 Dec; 9(23):e2000076. PubMed ID: 32338462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatically Cross-Linked Silk Fibroin-Based Hierarchical Scaffolds for Osteochondral Regeneration.
    Ribeiro VP; Pina S; Costa JB; Cengiz IF; García-Fernández L; Fernández-Gutiérrez MDM; Paiva OC; Oliveira AL; San-Román J; Oliveira JM; Reis RL
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):3781-3799. PubMed ID: 30609898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Subchondral Bone Condition During Microfracture Affects the Repair of the Osteochondral Unit in the Cartilage Defect in the Rat Model.
    Sumii J; Nakasa T; Kato Y; Miyaki S; Adachi N
    Am J Sports Med; 2023 Jul; 51(9):2472-2479. PubMed ID: 37306063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Slotted Decellularized Osteochondral Scaffold With Layer-Specific Release of Stem Cell Differentiation Stimulators Enhances Cartilage and Bone Regeneration in Osteochondral Defects in a Rabbit Model.
    Deng Z; Zhu W; Lu B; Li M; Xu D
    Am J Sports Med; 2022 Oct; 50(12):3390-3405. PubMed ID: 36122351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteochondral regeneration using an oriented nanofiber yarn-collagen type I/hyaluronate hybrid/TCP biphasic scaffold.
    Liu S; Wu J; Liu X; Chen D; Bowlin GL; Cao L; Lu J; Li F; Mo X; Fan C
    J Biomed Mater Res A; 2015 Feb; 103(2):581-92. PubMed ID: 24771686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering.
    Cao Y; Yang S; Zhao D; Li Y; Cheong SS; Han D; Li Q
    J Orthop Translat; 2020 Jul; 23():89-100. PubMed ID: 32514393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and biological evaluation of porous β-TCP bioceramics produced using digital light processing.
    Xu S; Zhang H; Li X; Zhang X; Liu H; Xiong Y; Gao R; Yu S
    Proc Inst Mech Eng H; 2022 Feb; 236(2):286-294. PubMed ID: 34479452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.