These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 38012655)
1. Prediction and diagnosis of depression using machine learning with electronic health records data: a systematic review. Nickson D; Meyer C; Walasek L; Toro C BMC Med Inform Decis Mak; 2023 Nov; 23(1):271. PubMed ID: 38012655 [TBL] [Abstract][Full Text] [Related]
2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
3. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study. Lin H; Long E; Ding X; Diao H; Chen Z; Liu R; Huang J; Cai J; Xu S; Zhang X; Wang D; Chen K; Yu T; Wu D; Zhao X; Liu Z; Wu X; Jiang Y; Yang X; Cui D; Liu W; Zheng Y; Luo L; Wang H; Chan CC; Morgan IG; He M; Liu Y PLoS Med; 2018 Nov; 15(11):e1002674. PubMed ID: 30399150 [TBL] [Abstract][Full Text] [Related]
4. Case Identification of Depression in Inpatient Electronic Medical Records: Scoping Review. Grothman A; Ma WJ; Tickner KG; Martin EA; Southern DA; Quan H JMIR Med Inform; 2024 Oct; 12():e49781. PubMed ID: 39401130 [TBL] [Abstract][Full Text] [Related]
5. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review. Alabi RO; Youssef O; Pirinen M; Elmusrati M; Mäkitie AA; Leivo I; Almangush A Artif Intell Med; 2021 May; 115():102060. PubMed ID: 34001326 [TBL] [Abstract][Full Text] [Related]
6. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
7. Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence. Nemesure MD; Heinz MV; Huang R; Jacobson NC Sci Rep; 2021 Jan; 11(1):1980. PubMed ID: 33479383 [TBL] [Abstract][Full Text] [Related]
8. Machine learning models to detect and predict patient safety events using electronic health records: A systematic review. Deimazar G; Sheikhtaheri A Int J Med Inform; 2023 Dec; 180():105246. PubMed ID: 37837710 [TBL] [Abstract][Full Text] [Related]
9. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Shillan D; Sterne JAC; Champneys A; Gibbison B Crit Care; 2019 Aug; 23(1):284. PubMed ID: 31439010 [TBL] [Abstract][Full Text] [Related]
10. Using Machine Learning to Predict Complications in Pregnancy: A Systematic Review. Bertini A; Salas R; Chabert S; Sobrevia L; Pardo F Front Bioeng Biotechnol; 2021; 9():780389. PubMed ID: 35127665 [No Abstract] [Full Text] [Related]
11. Machine Learning Approaches for Dementia Detection Through Speech and Gait Analysis: A Systematic Literature Review. Al-Hammadi M; Fleyeh H; Åberg AC; Halvorsen K; Thomas I J Alzheimers Dis; 2024; 100(1):1-27. PubMed ID: 38848181 [TBL] [Abstract][Full Text] [Related]
12. Using Electronic Health Records and Machine Learning to Predict Postpartum Depression. Wang S; Pathak J; Zhang Y Stud Health Technol Inform; 2019 Aug; 264():888-892. PubMed ID: 31438052 [TBL] [Abstract][Full Text] [Related]
13. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
14. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. Kim H; Lee S; Lee S; Hong S; Kang H; Kim N JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642 [TBL] [Abstract][Full Text] [Related]
15. Prediction of disease comorbidity using explainable artificial intelligence and machine learning techniques: A systematic review. Alsaleh MM; Allery F; Choi JW; Hama T; McQuillin A; Wu H; Thygesen JH Int J Med Inform; 2023 Jul; 175():105088. PubMed ID: 37156169 [TBL] [Abstract][Full Text] [Related]
16. Current approaches to identify sections within clinical narratives from electronic health records: a systematic review. Pomares-Quimbaya A; Kreuzthaler M; Schulz S BMC Med Res Methodol; 2019 Jul; 19(1):155. PubMed ID: 31319802 [TBL] [Abstract][Full Text] [Related]
17. Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation. Du Z; Yang Y; Zheng J; Li Q; Lin D; Li Y; Fan J; Cheng W; Chen XH; Cai Y JMIR Med Inform; 2020 Jul; 8(7):e17257. PubMed ID: 32628616 [TBL] [Abstract][Full Text] [Related]
19. Bidirectional Representation Learning From Transformers Using Multimodal Electronic Health Record Data to Predict Depression. Meng Y; Speier W; Ong MK; Arnold CW IEEE J Biomed Health Inform; 2021 Aug; 25(8):3121-3129. PubMed ID: 33661740 [TBL] [Abstract][Full Text] [Related]
20. Cervical cancer survival prediction by machine learning algorithms: a systematic review. Rahimi M; Akbari A; Asadi F; Emami H BMC Cancer; 2023 Apr; 23(1):341. PubMed ID: 37055741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]