These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 38012796)
1. 6mA-StackingCV: an improved stacking ensemble model for predicting DNA N6-methyladenine site. Huang G; Huang X; Luo W BioData Min; 2023 Nov; 16(1):34. PubMed ID: 38012796 [TBL] [Abstract][Full Text] [Related]
2. SoftVoting6mA: An improved ensemble-based method for predicting DNA N6-methyladenine sites in cross-species genomes. Yin Z; Lyu J; Zhang G; Huang X; Ma Q; Jiang J Math Biosci Eng; 2024 Feb; 21(3):3798-3815. PubMed ID: 38549308 [TBL] [Abstract][Full Text] [Related]
3. i6mA-stack: A stacking ensemble-based computational prediction of DNA N6-methyladenine (6mA) sites in the Rosaceae genome. Khanal J; Lim DY; Tayara H; Chong KT Genomics; 2021 Jan; 113(1 Pt 2):582-592. PubMed ID: 33010390 [TBL] [Abstract][Full Text] [Related]
4. Deep6mAPred: A CNN and Bi-LSTM-based deep learning method for predicting DNA N6-methyladenosine sites across plant species. Tang X; Zheng P; Li X; Wu H; Wei DQ; Liu Y; Huang G Methods; 2022 Aug; 204():142-150. PubMed ID: 35477057 [TBL] [Abstract][Full Text] [Related]
5. SNN6mA: Improved DNA N6-methyladenine site prediction using Siamese network-based feature embedding. Yu X; Hu J; Zhang Y Comput Biol Med; 2023 Nov; 166():107533. PubMed ID: 37793205 [TBL] [Abstract][Full Text] [Related]
6. iDNA6mA-Rice: A Computational Tool for Detecting N6-Methyladenine Sites in Rice. Lv H; Dao FY; Guan ZX; Zhang D; Tan JX; Zhang Y; Chen W; Lin H Front Genet; 2019; 10():793. PubMed ID: 31552096 [TBL] [Abstract][Full Text] [Related]
7. Critical evaluation of web-based DNA N6-methyladenine site prediction tools. Hasan MM; Shoombuatong W; Kurata H; Manavalan B Brief Funct Genomics; 2021 Jul; 20(4):258-272. PubMed ID: 33491072 [TBL] [Abstract][Full Text] [Related]
8. i6mA-Vote: Cross-Species Identification of DNA N6-Methyladenine Sites in Plant Genomes Based on Ensemble Learning With Voting. Teng Z; Zhao Z; Li Y; Tian Z; Guo M; Lu Q; Wang G Front Plant Sci; 2022; 13():845835. PubMed ID: 35237293 [TBL] [Abstract][Full Text] [Related]
9. SDM6A: A Web-Based Integrative Machine-Learning Framework for Predicting 6mA Sites in the Rice Genome. Basith S; Manavalan B; Shin TH; Lee G Mol Ther Nucleic Acids; 2019 Dec; 18():131-141. PubMed ID: 31542696 [TBL] [Abstract][Full Text] [Related]
10. Deep6mA: A deep learning framework for exploring similar patterns in DNA N6-methyladenine sites across different species. Li Z; Jiang H; Kong L; Chen Y; Lang K; Fan X; Zhang L; Pian C PLoS Comput Biol; 2021 Feb; 17(2):e1008767. PubMed ID: 33600435 [TBL] [Abstract][Full Text] [Related]
11. MGF6mARice: prediction of DNA N6-methyladenine sites in rice by exploiting molecular graph feature and residual block. Liu M; Sun ZL; Zeng Z; Lam KM Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325050 [TBL] [Abstract][Full Text] [Related]
12. BERT6mA: prediction of DNA N6-methyladenine site using deep learning-based approaches. Tsukiyama S; Hasan MM; Deng HW; Kurata H Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35225328 [TBL] [Abstract][Full Text] [Related]
13. i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome. Chen W; Lv H; Nie F; Lin H Bioinformatics; 2019 Aug; 35(16):2796-2800. PubMed ID: 30624619 [TBL] [Abstract][Full Text] [Related]
14. MM-6mAPred: identifying DNA N6-methyladenine sites based on Markov model. Pian C; Zhang G; Li F; Fan X Bioinformatics; 2020 Jan; 36(2):388-392. PubMed ID: 31297537 [TBL] [Abstract][Full Text] [Related]
15. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework. Hasan MM; Basith S; Khatun MS; Lee G; Manavalan B; Kurata H Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32910169 [TBL] [Abstract][Full Text] [Related]
16. Multi-scale DNA language model improves 6 mA binding sites prediction. Hou A; Luo H; Liu H; Luo L; Ding P Comput Biol Chem; 2024 Oct; 112():108129. PubMed ID: 39067351 [TBL] [Abstract][Full Text] [Related]
17. iDNA6mA-Rice-DL: A local web server for identifying DNA N6-methyladenine sites in rice genome by deep learning method. He S; Kong L; Chen J J Bioinform Comput Biol; 2021 Oct; 19(5):2150019. PubMed ID: 34291710 [TBL] [Abstract][Full Text] [Related]
18. i6mA-Caps: a CapsuleNet-based framework for identifying DNA N6-methyladenine sites. Rehman MU; Tayara H; Zou Q; Chong KT Bioinformatics; 2022 Aug; 38(16):3885-3891. PubMed ID: 35771648 [TBL] [Abstract][Full Text] [Related]
19. SNNRice6mA: A Deep Learning Method for Predicting DNA N6-Methyladenine Sites in Rice Genome. Yu H; Dai Z Front Genet; 2019; 10():1071. PubMed ID: 31681441 [TBL] [Abstract][Full Text] [Related]
20. Ense-i6mA: Identification of DNA N6-methyl-adenine Sites Using XGB-RFE Feature Se-lection and Ensemble Machine Learning. Fan XQ; Lin B; Hu J; Guo ZY IEEE/ACM Trans Comput Biol Bioinform; 2024 Jul; PP():. PubMed ID: 38949938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]