These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38013036)
1. Cost-effective production of ergothioneine using Rhodotorula mucilaginosa DL-X01 from molasses and fish bone meal enzymatic hydrolysate. Xiong K; Guo H; Xue S; Dai Y; Dong L; Ji C; Zhang S Bioresour Technol; 2024 Feb; 393():130101. PubMed ID: 38013036 [TBL] [Abstract][Full Text] [Related]
2. Production optimization of food functional factor ergothioneine in wild-type red yeast Rhodotorula mucilaginosa DL-X01. Xiong K; Guo H; Xue S; Liu M; Dai Y; Lin X; Zhang S J Sci Food Agric; 2024 May; 104(7):4050-4057. PubMed ID: 38353320 [TBL] [Abstract][Full Text] [Related]
3. Ergothioneine production using Methylobacterium species, yeast, and fungi. Fujitani Y; Alamgir KM; Tani A J Biosci Bioeng; 2018 Dec; 126(6):715-722. PubMed ID: 29910189 [TBL] [Abstract][Full Text] [Related]
4. Engineering non-conventional yeast Rhodotorula toruloides for ergothioneine production. Liu K; Xiang G; Li L; Liu T; Ke J; Xiong L; Wei D; Wang F Biotechnol Biofuels Bioprod; 2024 May; 17(1):65. PubMed ID: 38741169 [TBL] [Abstract][Full Text] [Related]
5. Carotenoid Production by Dias Rodrigues TV; Amore TD; Teixeira EC; de Medeiros Burkert JF Food Technol Biotechnol; 2019 Sep; 57(3):388-398. PubMed ID: 31866752 [TBL] [Abstract][Full Text] [Related]
6. β-Carotene production from sugarcane molasses by a newly isolated Rhodotorula toruloides L/24-26-1. Ochoa-Viñals N; Alonso-Estrada D; Faife-Pérez E; Chen Z; Michelena-Alvarez G; Martínez-Hernández JL; García-Cruz A; Ilina A Arch Microbiol; 2024 May; 206(6):245. PubMed ID: 38702537 [TBL] [Abstract][Full Text] [Related]
7. Improvement of Omega-3 Docosahexaenoic Acid Production by Marine Dinoflagellate Crypthecodinium cohnii Using Rapeseed Meal Hydrolysate and Waste Molasses as Feedstock. Gong Y; Liu J; Jiang M; Liang Z; Jin H; Hu X; Wan X; Hu C PLoS One; 2015; 10(5):e0125368. PubMed ID: 25942565 [TBL] [Abstract][Full Text] [Related]
8. Effect of aeration and agitation regimes on lipase production by newly isolated Rhodotorula mucilaginosa-MTCC 8737 in stirred tank reactor using molasses as sole production medium. Potumarthi R; Subhakar C; Vanajakshi J; Jetty A Appl Biochem Biotechnol; 2008 Dec; 151(2-3):700-10. PubMed ID: 18574564 [TBL] [Abstract][Full Text] [Related]
9. Fermentative Production of Ergothioneine by Exploring Novel Biosynthetic Pathway and Remodulating Precursor Synthesis Pathways. Zhang H; Zhang Y; Zhao M; Zabed HM; Qi X J Agric Food Chem; 2024 Jun; 72(25):14264-14273. PubMed ID: 38860833 [TBL] [Abstract][Full Text] [Related]
10. Insight into the pilot-scale fed-batch fermentation for production of Tang HW; Abbasiliasi S; Ng ZJ; Lee YY; Tang TK; Tan JS Prep Biochem Biotechnol; 2022; 52(6):691-700. PubMed ID: 34647854 [No Abstract] [Full Text] [Related]
11. beta-Carotene production in sugarcane molasses by a Rhodotorula glutinis mutant. Bhosale P; Gadre RV J Ind Microbiol Biotechnol; 2001 Jun; 26(6):327-32. PubMed ID: 11571614 [TBL] [Abstract][Full Text] [Related]
12. Agroindustrial byproduct-based media in the production of microbial oil rich in oleic acid and carotenoids. Rodrigues TVD; Teixeira EC; Macedo LP; Dos Santos GM; Burkert CAV; de Medeiros Burkert JF Bioprocess Biosyst Eng; 2022 Apr; 45(4):721-732. PubMed ID: 35076754 [TBL] [Abstract][Full Text] [Related]
13. Enhanced biodiesel and β-carotene production in Rhodotorula pacifica INDKK using sugarcane bagasse and molasses by an integrated biorefinery framework. Deeba F; Kiran Kumar K; Ali Wani S; Kumar Singh A; Sharma J; Gaur NA Bioresour Technol; 2022 May; 351():127067. PubMed ID: 35351564 [TBL] [Abstract][Full Text] [Related]
14. Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa. Yu YH; Pan HY; Guo LQ; Lin JF; Liao HL; Li HY Microb Cell Fact; 2020 Aug; 19(1):164. PubMed ID: 32811496 [TBL] [Abstract][Full Text] [Related]
15. Optimization of Molasses and Soybean Meal Content to Enhance Tetramethylpyrazine Yield by Li Y; Gan S; Luo L; Yang W; Mo L; Shang C Molecules; 2023 Sep; 28(18):. PubMed ID: 37764292 [TBL] [Abstract][Full Text] [Related]
16. Utilization of Wheat Bran Acid Hydrolysate by Ayadi I; Belghith H; Gargouri A; Guerfali M Biomed Res Int; 2019; 2019():3213521. PubMed ID: 31915687 [TBL] [Abstract][Full Text] [Related]
17. Recent Strategies for the Biosynthesis of Ergothioneine. Qiu Y; Chen Z; Su E; Wang L; Sun L; Lei P; Xu H; Li S J Agric Food Chem; 2021 Nov; 69(46):13682-13690. PubMed ID: 34757754 [TBL] [Abstract][Full Text] [Related]
18. A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. Vohra A; Satyanarayana T J Appl Microbiol; 2004; 97(3):471-6. PubMed ID: 15281926 [TBL] [Abstract][Full Text] [Related]
19. Improvement and Metabolomics-Based Analysis of d-Lactic Acid Production from Agro-Industrial Wastes by Liang S; Jiang W; Song Y; Zhou SF J Agric Food Chem; 2020 Jul; 68(29):7660-7669. PubMed ID: 32603099 [TBL] [Abstract][Full Text] [Related]
20. Sustainable production of single-cell oil and protein from wastepaper hydrolysate: identification and optimization of a Rhodotorula mucilaginosa strain as a promising yeast. Campos-Valdez A; Kirchmayr MR; Barrera-Martínez I; Casas-Godoy L FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37796891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]