These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mutations in LRP5 and BMP4 are associated with mesiodens, tooth agenesis, root malformation, and oral exostoses. Kantaputra PN; Guven Y; Tripuwabhrut K; Adisornkanj P; Hatsadaloi A; Kaewgahya M; Olsen B; Ngamphiw C; Jatooratthawichot P; Tongsima S; Ketudat Cairns JR Clin Genet; 2022 Oct; 102(4):333-338. PubMed ID: 35754005 [TBL] [Abstract][Full Text] [Related]
5. Mutations in LRP6 highlight the role of WNT signaling in oral exostoses and dental anomalies. Kantaputra P; Jatooratthawichot P; Chintakanon K; Intachai W; Pradermdutsadeeporn P; Adisornkanj P; Tongsima S; Ngamphiw C; Olsen B; Tucker AS; Ketudat Cairns JR Arch Oral Biol; 2022 Oct; 142():105514. PubMed ID: 35961235 [TBL] [Abstract][Full Text] [Related]
6. Mutations in the WLS are associated with dental anomalies, torus palatinus, and torus mandibularis. Kantaputra P; Tripuwabhrut K; Jatooratthawichot P; Adisornkanj P; Hatsadaloi A; Porntrakoolsaree N; Kaewgaya M; Olsen B; Tongsima S; Ngamphiw C; Ketudat Cairns JR Eur J Orthod; 2023 May; 45(3):317-323. PubMed ID: 36374649 [TBL] [Abstract][Full Text] [Related]
7. Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Ahn Y; Sims C; Logue JM; Weatherbee SD; Krumlauf R Development; 2013 Feb; 140(3):583-93. PubMed ID: 23293290 [TBL] [Abstract][Full Text] [Related]
8. Multiple modes of Lrp4 function in modulation of Wnt/β-catenin signaling during tooth development. Ahn Y; Sims C; Murray MJ; Kuhlmann PK; Fuentes-Antrás J; Weatherbee SD; Krumlauf R Development; 2017 Aug; 144(15):2824-2836. PubMed ID: 28694256 [TBL] [Abstract][Full Text] [Related]
9. LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner. Ohkawara B; Cabrera-Serrano M; Nakata T; Milone M; Asai N; Ito K; Ito M; Masuda A; Ito Y; Engel AG; Ohno K Hum Mol Genet; 2014 Apr; 23(7):1856-68. PubMed ID: 24234652 [TBL] [Abstract][Full Text] [Related]
10. LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways. Kumar J; Swanberg M; McGuigan F; Callreus M; Gerdhem P; Akesson K Bone; 2011 Sep; 49(3):343-8. PubMed ID: 21645651 [TBL] [Abstract][Full Text] [Related]
11. Lrp4: A novel modulator of extracellular signaling in craniofacial organogenesis. Ohazama A; Porntaveetus T; Ota MS; Herz J; Sharpe PT Am J Med Genet A; 2010 Dec; 152A(12):2974-83. PubMed ID: 21108386 [TBL] [Abstract][Full Text] [Related]
12. Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. Choi HY; Dieckmann M; Herz J; Niemeier A PLoS One; 2009 Nov; 4(11):e7930. PubMed ID: 19936252 [TBL] [Abstract][Full Text] [Related]
13. LRP4 induces extracellular matrix productions and facilitates chondrocyte differentiation. Asai N; Ohkawara B; Ito M; Masuda A; Ishiguro N; Ohno K Biochem Biophys Res Commun; 2014 Aug; 451(2):302-7. PubMed ID: 25091481 [TBL] [Abstract][Full Text] [Related]
14. Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged-Notch signaling in fin and limb development. Tian J; Shao J; Liu C; Hou HY; Chou CW; Shboul M; Li GQ; El-Khateeb M; Samarah OQ; Kou Y; Chen YH; Chen MJ; Lyu Z; Chen WL; Chen YF; Sun YH; Liu YW Cell Mol Life Sci; 2019 Jan; 76(1):163-178. PubMed ID: 30327840 [TBL] [Abstract][Full Text] [Related]
15. Cenani-Lenz syndrome and other related syndactyly disorders due to variants in LRP4, GREM1/FMN1, and APC: Insight into the pathogenesis and the relationship to polyposis through the WNT and BMP antagonistic pathways. Al-Qattan MM; Alkuraya FS Am J Med Genet A; 2019 Feb; 179(2):266-279. PubMed ID: 30569497 [TBL] [Abstract][Full Text] [Related]
16. Novel variants in the LRP4 underlying Cenani-Lenz Syndactyly syndrome. Khan H; Chong AEQ; Bilal M; Nawaz S; Abdullah ; Abbasi S; Hussain A; Hussain S; Ullah I; Ali H; Xue S; Ahmad W J Hum Genet; 2022 May; 67(5):253-259. PubMed ID: 34857885 [TBL] [Abstract][Full Text] [Related]
17. Identification of Compound Heterozygous Variants in LRP4 Demonstrates That a Pathogenic Variant outside the Third β-Propeller Domain Can Cause Sclerosteosis. Huybrechts Y; Boudin E; Hendrickx G; Steenackers E; Hamdy N; Mortier G; Martínez Díaz-Guerra G; Bracamonte MS; Appelman-Dijkstra NM; Van Hul W Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052419 [TBL] [Abstract][Full Text] [Related]
18. Competitive blocking of LRP4-sclerostin binding interface strongly promotes bone anabolic functions. Katchkovsky S; Chatterjee B; Abramovitch-Dahan CV; Papo N; Levaot N Cell Mol Life Sci; 2022 Jan; 79(2):113. PubMed ID: 35099616 [TBL] [Abstract][Full Text] [Related]
19. Lrp4 modulates extracellular integration of cell signaling pathways in development. Ohazama A; Johnson EB; Ota MS; Choi HY; Porntaveetus T; Oommen S; Itoh N; Eto K; Gritli-Linde A; Herz J; Sharpe PT PLoS One; 2008; 3(12):e4092. PubMed ID: 19116665 [TBL] [Abstract][Full Text] [Related]
20. LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Li Y; Pawlik B; Elcioglu N; Aglan M; Kayserili H; Yigit G; Percin F; Goodman F; Nürnberg G; Cenani A; Urquhart J; Chung BD; Ismail S; Amr K; Aslanger AD; Becker C; Netzer C; Scambler P; Eyaid W; Hamamy H; Clayton-Smith J; Hennekam R; Nürnberg P; Herz J; Temtamy SA; Wollnik B Am J Hum Genet; 2010 May; 86(5):696-706. PubMed ID: 20381006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]