BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38013205)

  • 1. LRP4 mutations, dental anomalies, and oral exostoses.
    Kantaputra P; Panichkul W; Sillapasorn P; Adisornkanj P; Kitsadayurach P; Kaewgaya M; Intachai W; Olsen B; Ngamphiw C; Leethanakul C; Jatooratthawichot P; Ketudat Cairns JR; Tongsima S
    Int J Paediatr Dent; 2024 Jul; 34(4):432-441. PubMed ID: 38013205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rare Variants in
    Kantaputra PN; Jatooratthawichot P; Adisornkanj P; Kitsadayurach P; Kaewgahya M; Olsen B; Ohazama A; Ngamphiw C; Tongsima S; Cox TC; Ketudat Cairns JR
    Biology (Basel); 2023 Jan; 12(2):. PubMed ID: 36829498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Variants in
    Ruangchan C; Ngamphiw C; Krasaesin A; Intarak N; Tongsima S; Kaewgahya M; Kawasaki K; Mahawong P; Paripurana K; Sookawat B; Jatooratthawichot P; Cox TC; Ohazama A; Ketudat Cairns JR; Porntaveetus T; Kantaputra P
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in LRP5 and BMP4 are associated with mesiodens, tooth agenesis, root malformation, and oral exostoses.
    Kantaputra PN; Guven Y; Tripuwabhrut K; Adisornkanj P; Hatsadaloi A; Kaewgahya M; Olsen B; Ngamphiw C; Jatooratthawichot P; Tongsima S; Ketudat Cairns JR
    Clin Genet; 2022 Oct; 102(4):333-338. PubMed ID: 35754005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in LRP6 highlight the role of WNT signaling in oral exostoses and dental anomalies.
    Kantaputra P; Jatooratthawichot P; Chintakanon K; Intachai W; Pradermdutsadeeporn P; Adisornkanj P; Tongsima S; Ngamphiw C; Olsen B; Tucker AS; Ketudat Cairns JR
    Arch Oral Biol; 2022 Oct; 142():105514. PubMed ID: 35961235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in the WLS are associated with dental anomalies, torus palatinus, and torus mandibularis.
    Kantaputra P; Tripuwabhrut K; Jatooratthawichot P; Adisornkanj P; Hatsadaloi A; Porntrakoolsaree N; Kaewgaya M; Olsen B; Tongsima S; Ngamphiw C; Ketudat Cairns JR
    Eur J Orthod; 2023 May; 45(3):317-323. PubMed ID: 36374649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling.
    Ahn Y; Sims C; Logue JM; Weatherbee SD; Krumlauf R
    Development; 2013 Feb; 140(3):583-93. PubMed ID: 23293290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple modes of Lrp4 function in modulation of Wnt/β-catenin signaling during tooth development.
    Ahn Y; Sims C; Murray MJ; Kuhlmann PK; Fuentes-Antrás J; Weatherbee SD; Krumlauf R
    Development; 2017 Aug; 144(15):2824-2836. PubMed ID: 28694256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner.
    Ohkawara B; Cabrera-Serrano M; Nakata T; Milone M; Asai N; Ito K; Ito M; Masuda A; Ito Y; Engel AG; Ohno K
    Hum Mol Genet; 2014 Apr; 23(7):1856-68. PubMed ID: 24234652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways.
    Kumar J; Swanberg M; McGuigan F; Callreus M; Gerdhem P; Akesson K
    Bone; 2011 Sep; 49(3):343-8. PubMed ID: 21645651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lrp4: A novel modulator of extracellular signaling in craniofacial organogenesis.
    Ohazama A; Porntaveetus T; Ota MS; Herz J; Sharpe PT
    Am J Med Genet A; 2010 Dec; 152A(12):2974-83. PubMed ID: 21108386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo.
    Choi HY; Dieckmann M; Herz J; Niemeier A
    PLoS One; 2009 Nov; 4(11):e7930. PubMed ID: 19936252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LRP4 induces extracellular matrix productions and facilitates chondrocyte differentiation.
    Asai N; Ohkawara B; Ito M; Masuda A; Ishiguro N; Ohno K
    Biochem Biophys Res Commun; 2014 Aug; 451(2):302-7. PubMed ID: 25091481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged-Notch signaling in fin and limb development.
    Tian J; Shao J; Liu C; Hou HY; Chou CW; Shboul M; Li GQ; El-Khateeb M; Samarah OQ; Kou Y; Chen YH; Chen MJ; Lyu Z; Chen WL; Chen YF; Sun YH; Liu YW
    Cell Mol Life Sci; 2019 Jan; 76(1):163-178. PubMed ID: 30327840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cenani-Lenz syndrome and other related syndactyly disorders due to variants in LRP4, GREM1/FMN1, and APC: Insight into the pathogenesis and the relationship to polyposis through the WNT and BMP antagonistic pathways.
    Al-Qattan MM; Alkuraya FS
    Am J Med Genet A; 2019 Feb; 179(2):266-279. PubMed ID: 30569497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel variants in the LRP4 underlying Cenani-Lenz Syndactyly syndrome.
    Khan H; Chong AEQ; Bilal M; Nawaz S; Abdullah ; Abbasi S; Hussain A; Hussain S; Ullah I; Ali H; Xue S; Ahmad W
    J Hum Genet; 2022 May; 67(5):253-259. PubMed ID: 34857885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Compound Heterozygous Variants in LRP4 Demonstrates That a Pathogenic Variant outside the Third β-Propeller Domain Can Cause Sclerosteosis.
    Huybrechts Y; Boudin E; Hendrickx G; Steenackers E; Hamdy N; Mortier G; Martínez Díaz-Guerra G; Bracamonte MS; Appelman-Dijkstra NM; Van Hul W
    Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive blocking of LRP4-sclerostin binding interface strongly promotes bone anabolic functions.
    Katchkovsky S; Chatterjee B; Abramovitch-Dahan CV; Papo N; Levaot N
    Cell Mol Life Sci; 2022 Jan; 79(2):113. PubMed ID: 35099616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lrp4 modulates extracellular integration of cell signaling pathways in development.
    Ohazama A; Johnson EB; Ota MS; Choi HY; Porntaveetus T; Oommen S; Itoh N; Eto K; Gritli-Linde A; Herz J; Sharpe PT
    PLoS One; 2008; 3(12):e4092. PubMed ID: 19116665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome.
    Li Y; Pawlik B; Elcioglu N; Aglan M; Kayserili H; Yigit G; Percin F; Goodman F; Nürnberg G; Cenani A; Urquhart J; Chung BD; Ismail S; Amr K; Aslanger AD; Becker C; Netzer C; Scambler P; Eyaid W; Hamamy H; Clayton-Smith J; Hennekam R; Nürnberg P; Herz J; Temtamy SA; Wollnik B
    Am J Hum Genet; 2010 May; 86(5):696-706. PubMed ID: 20381006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.