BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38013436)

  • 1. Antiviral Peptides Derived from Plants: Their Designs and Functions.
    Feyzyab H; Fathi N; Bolhassani A
    Protein Pept Lett; 2023; 30(12):975-985. PubMed ID: 38013436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses.
    Sukmarini L
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35565968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of the antiviral activity of cationic antimicrobial peptides.
    Urmi UL; Vijay AK; Kuppusamy R; Islam S; Willcox MDP
    Peptides; 2023 Aug; 166():171024. PubMed ID: 37172781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Prospects For the Use of Peptides against Respiratory Syncytial Virus].
    Shilovskiy IP; Andreev SM; Kozhikhova KV; Nikolskii AA; Khaitov MR
    Mol Biol (Mosk); 2019; 53(4):541-560. PubMed ID: 31397431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses.
    Wani AR; Yadav K; Khursheed A; Rather MA
    Microb Pathog; 2021 Mar; 152():104620. PubMed ID: 33212200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Broad-Spectrum Antiviral Potential of the Amphibian Peptide AR-23.
    Chianese A; Zannella C; Monti A; De Filippis A; Doti N; Franci G; Galdiero M
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Milk Antiviral Proteins and Derived Peptides against Zoonoses.
    Santos I; Silva M; Grácio M; Pedroso L; Lima A
    Int J Mol Sci; 2024 Feb; 25(3):. PubMed ID: 38339120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Claudin-Derived Peptides Block the Membrane Fusion Process of Zika Virus and Are Broad Flavivirus Inhibitors.
    Zoladek J; Burlaud-Gaillard J; Chazal M; Desgraupes S; Jeannin P; Gessain A; Pardigon N; Hubert M; Roingeard P; Jouvenet N; Afonso PV
    Microbiol Spectr; 2022 Oct; 10(5):e0298922. PubMed ID: 36040168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of antiviral peptides for use against zoonotic and selected non-zoonotic viruses.
    Hollmann A; Cardoso NP; Espeche JC; Maffía PC
    Peptides; 2021 Aug; 142():170570. PubMed ID: 34000327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant-Derived Antimicrobial Peptides as Potential Antiviral Agents in Systemic Viral Infections.
    Mammari N; Krier Y; Albert Q; Devocelle M; Varbanov M; On Behalf Of The Oemonom
    Pharmaceuticals (Basel); 2021 Aug; 14(8):. PubMed ID: 34451871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing the Therapeutic Potential and Biological Activity of Antiviral Peptides.
    Guarracino DA; Iannaccone J; Cabrera A; Kancharla S
    Chembiochem; 2022 Oct; 23(20):e202200415. PubMed ID: 36075015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective Antiviral Medicinal Plants and Biological Compounds Against Central Nervous System Infections: A Mechanistic Review.
    Malekmohammad K; Rafieian-Kopaei M; Sardari S; Sewell RDE
    Curr Drug Discov Technol; 2020; 17(4):469-483. PubMed ID: 31309894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-protein interactions as targets for antiviral chemotherapy.
    Loregian A; Marsden HS; Palù G
    Rev Med Virol; 2002; 12(4):239-62. PubMed ID: 12125015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiviral peptides against Coronaviridae family: A review.
    Heydari H; Golmohammadi R; Mirnejad R; Tebyanian H; Fasihi-Ramandi M; Moosazadeh Moghaddam M
    Peptides; 2021 May; 139():170526. PubMed ID: 33676968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broad-Spectrum Antiviral Activity of the Amphibian Antimicrobial Peptide Temporin L and Its Analogs.
    Zannella C; Chianese A; Palomba L; Marcocci ME; Bellavita R; Merlino F; Grieco P; Folliero V; De Filippis A; Mangoni M; Nencioni L; Franci G; Galdiero M
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides.
    Hoffmann AR; Guha S; Wu E; Ghimire J; Wang Y; He J; Garry RF; Wimley WC
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32907984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A peptide derived from enzymatic digestion of globulins from amaranth shows strong affinity binding to the replication origin of Tomato yellow leaf curl virus reducing viral replication in Nicotiana benthamiana.
    Mendoza-Figueroa JS; Kvarnheden A; Méndez-Lozano J; Rodríguez-Negrete EA; Arreguín-Espinosa de Los Monteros R; Soriano-García M
    Pestic Biochem Physiol; 2018 Feb; 145():56-65. PubMed ID: 29482732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents.
    Gabbianelli R; Shahar E; de Simone G; Rucci C; Bordoni L; Feliziani G; Zhao F; Ferrati M; Maggi F; Spinozzi E; Mahajna J
    Nutrients; 2023 Nov; 15(22):. PubMed ID: 38004113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medicinal Plants against Viral Infections: A Review of Metabolomics Evidence for the Antiviral Properties and Potentials in Plant Sources.
    Adeosun WB; Loots DT
    Viruses; 2024 Jan; 16(2):. PubMed ID: 38399995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Peptide AmPep1 Derived from Amaranth Recognizes the Replication Hairpin of TYLCV Disturbing Its Replication Process in Host Plants.
    Mendoza-Figueroa JS; Badillo-Ramírez I; Kvarnheden A; Rosas-Ramírez DG; Rodríguez-Negrete EA; Méndez-Lozano J; Saniger JM; Soriano-García M
    J Agric Food Chem; 2019 Aug; 67(33):9241-9253. PubMed ID: 31369258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.