These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38013813)

  • 1. Discovery of lead quinone cathode materials for Li-ion batteries.
    Zhou X; Khetan A; Zheng J; Huijben M; Janssen RAJ; Er S
    Digit Discov; 2023 Aug; 2(4):1016-1025. PubMed ID: 38013813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual screening of organic quinones as cathode materials for sodium-ion batteries.
    Zhou X; Janssen RAJ; Er S
    Energy Adv; 2023 Jun; 2(6):820-828. PubMed ID: 37323160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries.
    Danchovski Y; Rasheev H; Stoyanova R; Tadjer A
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.
    Huan L; Xie J; Chen M; Diao G; Zhao R; Zuo T
    J Mol Model; 2017 Apr; 23(4):105. PubMed ID: 28271285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-cost naphthaldiimide based organic cathode for rechargeable lithium-ion batteries.
    Wang Z; Zhang P; Li J; Zhang C; Jiang JX; Lv M; Ding Z; Zhang B
    Front Chem; 2022; 10():1056244. PubMed ID: 36465871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure-electrochemical property relationship of quinone electrodes for lithium-ion batteries.
    Miao L; Liu L; Shang Z; Li Y; Lu Y; Cheng F; Chen J
    Phys Chem Chem Phys; 2018 May; 20(19):13478-13484. PubMed ID: 29726879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational design of molecules for an all-quinone redox flow battery.
    Er S; Suh C; Marshak MP; Aspuru-Guzik A
    Chem Sci; 2015 Feb; 6(2):885-893. PubMed ID: 29560173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling Li
    He J; Tao T; Yang F; Sun Z
    ChemSusChem; 2022 Aug; 15(15):e202200817. PubMed ID: 35642616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.
    Wang Y; Zhang W; Chen L; Shi S; Liu J
    Sci Technol Adv Mater; 2017; 18(1):134-146. PubMed ID: 28458737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current computational trends in polyanionic cathode materials for Li and Na batteries.
    Chakraborty S; Banerjee A; Watcharatharapong T; Araujo RB; Ahuja R
    J Phys Condens Matter; 2018 Jul; 30(28):283003. PubMed ID: 29932053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward efficient electrodes for a high-performance fast-charge Li-ion battery: molecular dynamics simulation and DFT calculations.
    Zaboli A; Raissi H; Hashemzadeh H; Farzad F
    Phys Chem Chem Phys; 2023 Sep; 25(35):23937-23953. PubMed ID: 37642543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oxygen vacancy in Li-ion battery cathode materials.
    Tang ZK; Xue YF; Teobaldi G; Liu LM
    Nanoscale Horiz; 2020 Nov; 5(11):1453-1466. PubMed ID: 33103682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries.
    Kim KC; Liu T; Lee SW; Jang SS
    J Am Chem Soc; 2016 Feb; 138(7):2374-82. PubMed ID: 26824616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RedDB, a computational database of electroactive molecules for aqueous redox flow batteries.
    Sorkun E; Zhang Q; Khetan A; Sorkun MC; Er S
    Sci Data; 2022 Nov; 9(1):718. PubMed ID: 36443329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-Based Anion Redox for Lithium Batteries.
    Li M; Bi X; Amine K; Lu J
    Acc Chem Res; 2020 Aug; 53(8):1436-1444. PubMed ID: 32634307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.