These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38013841)

  • 1. Efficient additive-free formic acid dehydrogenation with a NNN-ruthenium complex.
    Knörr P; Lentz N; Albrecht M
    Catal Sci Technol; 2023 Oct; 13(19):5625-5631. PubMed ID: 38013841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient Base-Free Dehydrogenation of Formic Acid at Low Temperature.
    Prichatz C; Trincado M; Tan L; Casas F; Kammer A; Junge H; Beller M; Grützmacher H
    ChemSusChem; 2018 Sep; 11(18):3092-3095. PubMed ID: 30062851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Catalyst Isomers Using an
    Curley JB; Hert C; Bernskoetter WH; Hazari N; Mercado BQ
    Inorg Chem; 2022 Jan; 61(1):643-656. PubMed ID: 34955015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.
    Guan C; Zhang DD; Pan Y; Iguchi M; Ajitha MJ; Hu J; Li H; Yao C; Huang MH; Min S; Zheng J; Himeda Y; Kawanami H; Huang KW
    Inorg Chem; 2017 Jan; 56(1):438-445. PubMed ID: 27983821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N'-diimine ligand in water.
    Wang Z; Lu SM; Li J; Wang J; Li C
    Chemistry; 2015 Sep; 21(36):12592-5. PubMed ID: 26202172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protic NNN and NCN Pincer-Type Ruthenium Complexes Featuring (Trifluoromethyl)pyrazole Arms: Synthesis and Application to Catalytic Hydrogen Evolution from Formic Acid.
    Nakahara Y; Toda T; Matsunami A; Kayaki Y; Kuwata S
    Chem Asian J; 2018 Jan; 13(1):73-80. PubMed ID: 29140603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient Additive-Free Dehydrogenation of Neat Formic Acid.
    Kar S; Rauch M; Leitus G; Ben-David Y; Milstein D
    Nat Catal; 2021 Mar; 4():193-201. PubMed ID: 37152186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid.
    Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW
    ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Production from Formic Acid and Formaldehyde over Ruthenium Catalysts in Water.
    Patra S; Singh SK
    Inorg Chem; 2020 Apr; 59(7):4234-4243. PubMed ID: 32207936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sterically and Electronically Flexible Pyridylidene Amine Dinitrogen Ligands at Palladium: Hemilabile cis/trans Coordination and Application in Dehydrogenation Catalysis.
    Lentz N; Streit Y; Knörr P; Albrecht M
    Chemistry; 2022 Dec; 28(68):e202202672. PubMed ID: 36066486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ligand design strategy to enhance catalyst stability for efficient formic acid dehydrogenation.
    Guo J; Li M; Yin C; Li X; Wang Y; Yuan J; Qi T
    Dalton Trans; 2023 Apr; 52(15):4856-4861. PubMed ID: 36939828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid.
    Ding Y; Peng W; Zhang L; Xia J; Feng G; Lu ZH
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):879-887. PubMed ID: 36306599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrazole-pyridine-pyrazole (NNN) ruthenium(II) complex catalyzed acceptorless dehydrogenation of alcohols to aldehydes.
    Chen Y; Cui T; Chen H; Li Zheng X; Fu H; Li R
    Dalton Trans; 2023 Sep; 52(35):12368-12377. PubMed ID: 37593848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating cation effects in homogeneously catalyzed formic acid dehydrogenation.
    Govindarajan N; Meijer EJ
    Faraday Discuss; 2019 Dec; 220(0):404-413. PubMed ID: 31544196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into catalyst speciation and hydrogen co-evolution during enantioselective formic acid-driven transfer hydrogenation with bifunctional ruthenium complexes from multi-technique operando reaction monitoring.
    Berry DBG; Codina A; Clegg I; Lyall CL; Lowe JP; Hintermair U
    Faraday Discuss; 2019 Dec; 220(0):45-57. PubMed ID: 31524899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen storage in formic acid amine adducts.
    Boddien A; Gartner F; Mellmann D; Sponholz P; Junge H; Laurenczy G; Beller M
    Chimia (Aarau); 2011; 65(4):214-8. PubMed ID: 21678764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruthenium-mediated C-H functionalization of pyridine: the role of vinylidene and pyridylidene ligands.
    Johnson DG; Lynam JM; Mistry NS; Slattery JM; Thatcher RJ; Whitwood AC
    J Am Chem Soc; 2013 Feb; 135(6):2222-34. PubMed ID: 23244051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iridium and Ruthenium Complexes of
    Siek S; Burks DB; Gerlach DL; Liang G; Tesh JM; Thompson CR; Qu F; Shankwitz JE; Vasquez RM; Chambers N; Szulczewski GJ; Grotjahn DB; Webster CE; Papish ET
    Organometallics; 2017 Mar; 36(6):1091-1106. PubMed ID: 29540958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Deactivation Pathways of Iridium(III) Pyridine-Carboxiamide Catalysts for Formic Acid Dehydrogenation.
    Menendez Rodriguez G; Zaccaria F; Tensi L; Zuccaccia C; Belanzoni P; Macchioni A
    Chemistry; 2021 Jan; 27(6):2050-2064. PubMed ID: 33141938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.