These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 3801391)
1. A comparative carbon-13, nitrogen-15, and phosphorus-31 nuclear magnetic resonance study on the flavodoxins from Clostridium MP, Megasphaera elsdenii, and Azotobacter vinelandii. Vervoort J; Müller F; Mayhew SG; van den Berg WA; Moonen CT; Bacher A Biochemistry; 1986 Nov; 25(22):6789-99. PubMed ID: 3801391 [TBL] [Abstract][Full Text] [Related]
2. Properties of the complexes of riboflavin 3',5'-bisphosphate and the apoflavodoxins from Megasphaera elsdenii and Desulfovibrio vulgaris. Vervoort J; van Berkel WJ; Mayhew SG; Müller F; Bacher A; Nielsen P; LeGall J Eur J Biochem; 1986 Dec; 161(3):749-56. PubMed ID: 3792314 [TBL] [Abstract][Full Text] [Related]
3. pH-dependent spectroscopic changes associated with the hydroquinone of FMN in flavodoxins. Yalloway GN; Mayhew SG; Malthouse JP; Gallagher ME; Curley GP Biochemistry; 1999 Mar; 38(12):3753-62. PubMed ID: 10090764 [TBL] [Abstract][Full Text] [Related]
4. Effect of pressure upon the fluorescence of various flavodoxins. Visser AJ; Li TM; Drickamer HG; Weber G Biochemistry; 1977 Nov; 16(22):4879-82. PubMed ID: 20943 [TBL] [Abstract][Full Text] [Related]
5. Structural and dynamic information on the complex of Megasphaera elsdenii apoflavodoxin and riboflavin 5'-phosphate. A phosphorus-31 nuclear magnetic resonance study. Moonen CT; Müller F Biochemistry; 1982 Jan; 21(2):408-14. PubMed ID: 7074025 [TBL] [Abstract][Full Text] [Related]
6. Structure and oxidation-reduction behavior of 1-deaza-FMN flavodoxins: modulation of redox potentials in flavodoxins. Ludwig ML; Schopfer LM; Metzger AL; Pattridge KA; Massey V Biochemistry; 1990 Nov; 29(45):10364-75. PubMed ID: 2261478 [TBL] [Abstract][Full Text] [Related]
7. Raman spectra of flavin bound in flavodoxins and in other flavoproteins. Evidence for structural variations in the flavin-binding region. Visser AJ; Vervoort J; O'Kane DJ; Lee J; Carreira LA Eur J Biochem; 1983 Apr; 131(3):639-45. PubMed ID: 6840072 [TBL] [Abstract][Full Text] [Related]
8. A 13C nuclear-magnetic-resonance study on free flavins and Megasphaera elsdenii and Azotobacter vinelandii flavodoxin. 13C-enriched flavins as probes for the study of flavoprotein active sites. van Schagen CG; Müller F Eur J Biochem; 1981 Nov; 120(1):33-9. PubMed ID: 7308219 [No Abstract] [Full Text] [Related]
9. Nuclear-magnetic-resonance investigation of 15N-labeled flavins, free and bound to Megasphaera elsdenii apoflavodoxin. Franken HD; Rüterjans H; Müller F Eur J Biochem; 1984 Feb; 138(3):481-9. PubMed ID: 6692831 [TBL] [Abstract][Full Text] [Related]
10. A photo-CIDNP study of the active sites of Megasphaera elsdenii and Clostridium MP flavodoxins. Moonen CT; Hore PJ; Müller F; Kaptein R; Mayhew SG FEBS Lett; 1982 Nov; 149(1):141-6. PubMed ID: 7152030 [TBL] [Abstract][Full Text] [Related]
11. Flavodoxin-cytochrome c interactions: circular dichroism and nuclear magnetic resonance studies. Tollin G; Brown K; De Francesco R; Edmondson DE Biochemistry; 1987 Aug; 26(16):5042-8. PubMed ID: 2822104 [TBL] [Abstract][Full Text] [Related]
12. Flavodoxin from Anabaena 7120: uniform nitrogen-15 enrichment and hydrogen-1, nitrogen-15, and phosphorus-31 NMR investigations of the flavin mononucleotide binding site in the reduced and oxidized states. Stockman BJ; Westler WM; Mooberry ES; Markley JL Biochemistry; 1988 Jan; 27(1):136-42. PubMed ID: 3126808 [TBL] [Abstract][Full Text] [Related]
14. A 31P-nuclear-magnetic-resonance study of NADPH-cytochrome-P-450 reductase and of the Azotobacter flavodoxin/ferredoxin-NADP+ reductase complex. Bonants PJ; Müller F; Vervoort J; Edmondson DE Eur J Biochem; 1990 Jul; 190(3):531-7. PubMed ID: 2115440 [TBL] [Abstract][Full Text] [Related]
15. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies. Chang FC; Swenson RP Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827 [TBL] [Abstract][Full Text] [Related]
16. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone. Bradley LH; Swenson RP Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805 [TBL] [Abstract][Full Text] [Related]
17. Flavin dynamics in reduced flavodoxins. A time-resolved polarized fluorescence study. Leenders R; Kooijman M; van Hoek A; Veeger C; Visser AJ Eur J Biochem; 1993 Jan; 211(1-2):37-45. PubMed ID: 8425547 [TBL] [Abstract][Full Text] [Related]
18. Flavin-protein interactions in flavocytochrome b2 as studied by NMR after reconstitution of the enzyme with 13C- and 15N-labelled flavin. Fleischmann G; Lederer F; Müller F; Bacher A; Rüterjans H Eur J Biochem; 2000 Aug; 267(16):5156-67. PubMed ID: 10931200 [TBL] [Abstract][Full Text] [Related]
19. The base sequence of the nifF gene of Klebsiella pneumoniae and homology of the predicted amino acid sequence of its protein product to other flavodoxins. Drummond MH Biochem J; 1985 Dec; 232(3):891-6. PubMed ID: 3911951 [TBL] [Abstract][Full Text] [Related]
20. On the mobility of riboflavin 5'-phosphate in Megasphaera elsdenii flavodoxin as studied by 13C-nuclear-magnetic-resonance relaxation. Moonen CT; Müller F Eur J Biochem; 1983 Jun; 133(2):463-70. PubMed ID: 6852053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]