BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38014121)

  • 1. Polygenic burden of short tandem repeat expansions promote risk for Alzheimer's disease.
    Guo MH; Lee WP; Vardarajan B; Schellenberg GD; Phillips-Cremins J
    medRxiv; 2023 Nov; ():. PubMed ID: 38014121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short tandem repeat expansions in cortical layer-specific genes implicate in phenotypic severity and adaptability of autism spectrum disorder.
    Kim JH; Koh IG; Lee H; Lee GH; Song DY; Kim SW; Kim Y; Han JH; Bong G; Lee J; Byun H; Son JH; Kim YR; Lee Y; Kim JJ; Park JW; Kim IB; Choi JK; Jang JH; Trost B; Lee J; Kim E; Yoo HJ; An JY
    Psychiatry Clin Neurosci; 2024 Jul; 78(7):405-415. PubMed ID: 38751214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide sequencing as a first-tier screening test for short tandem repeat expansions.
    Rajan-Babu IS; Peng JJ; Chiu R; ; ; Li C; Mohajeri A; Dolzhenko E; Eberle MA; Birol I; Friedman JM
    Genome Med; 2021 Aug; 13(1):126. PubMed ID: 34372915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in the detection of repeat expansions with short-read next-generation sequencing.
    Bahlo M; Bennett MF; Degorski P; Tankard RM; Delatycki MB; Lockhart PJ
    F1000Res; 2018; 7():. PubMed ID: 29946432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-specific tandem repeat expansion and differential gene expression during primate evolution.
    Sulovari A; Li R; Audano PA; Porubsky D; Vollger MR; Logsdon GA; ; Warren WC; Pollen AA; Chaisson MJP; Eichler EE
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23243-23253. PubMed ID: 31659027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of software for analysis of rare and common short tandem repeat (STR) variation using human genome sequences from clinical and population-based samples.
    Oketch JW; Wain LV; Hollox EJ
    PLoS One; 2024; 19(4):e0300545. PubMed ID: 38558075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide detection of short tandem repeat expansions by long-read sequencing.
    Liu Q; Tong Y; Wang K
    BMC Bioinformatics; 2020 Dec; 21(Suppl 21):542. PubMed ID: 33371889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The landscape of human SVA retrotransposons.
    Chu C; Lin EW; Tran A; Jin H; Ho NI; Veit A; Cortes-Ciriano I; Burns KH; Ting DT; Park PJ
    Nucleic Acids Res; 2023 Nov; 51(21):11453-11465. PubMed ID: 37823611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short tandem repeats of human genome are intrinsically unstable in cultured cells in vivo.
    Liu Y; Li J; Wu Q
    Gene; 2023 Aug; 877():147539. PubMed ID: 37279866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of short tandem repeats in the Tibetan macaque genome based on resequencing data.
    Liu SX; Hou W; Zhang XY; Peng CJ; Yue BS; Fan ZX; Li J
    Zool Res; 2018 Jul; 39(4):291-300. PubMed ID: 29643326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Genomic landscape of short tandem repeats across multiple ancestries.
    Vijayaraghavan P; Batalov S; Ding Y; Sanford E; Kingsmore SF; Dimmock D; Hobbs C; Bainbridge M
    PLoS One; 2023; 18(1):e0279430. PubMed ID: 36701310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Duck (
    Fan W; Xu L; Cheng H; Li M; Liu H; Jiang Y; Guo Y; Zhou Z; Hou S
    Front Genet; 2018; 9():520. PubMed ID: 30425731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.
    Fungtammasan A; Ananda G; Hile SE; Su MS; Sun C; Harris R; Medvedev P; Eckert K; Makova KD
    Genome Res; 2015 May; 25(5):736-49. PubMed ID: 25823460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing.
    Doi K; Monjo T; Hoang PH; Yoshimura J; Yurino H; Mitsui J; Ishiura H; Takahashi Y; Ichikawa Y; Goto J; Tsuji S; Morishita S
    Bioinformatics; 2014 Mar; 30(6):815-22. PubMed ID: 24215022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of Southern Brazil subjects using the PowerSeqâ„¢ AUTO/Y system for short tandem repeat sequencing.
    Silva DSBS; Sawitzki FR; Scheible MKR; Bailey SF; Alho CS; Faith SA
    Forensic Sci Int Genet; 2018 Mar; 33():129-135. PubMed ID: 29275088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural variation in
    Zhang G; Wang Y; Andersen EC
    Genome Res; 2022 Oct; 32(10):1852-1861. PubMed ID: 36195344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short tandem repeats in human exons: a target for disease mutations.
    Madsen BE; Villesen P; Wiuf C
    BMC Genomics; 2008 Sep; 9():410. PubMed ID: 18789129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massive variation of short tandem repeats with functional consequences across strains of
    Press MO; McCoy RC; Hall AN; Akey JM; Queitsch C
    Genome Res; 2018 Aug; 28(8):1169-1178. PubMed ID: 29970452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling the Genome-Wide Landscape of Short Tandem Repeats by Long-Read Sequencing.
    Liu Z; Zhao G; Xiao Y; Zeng S; Yuan Y; Zhou X; Fang Z; He R; Li B; Zhao Y; Pan H; Wang Y; Yu G; Peng IF; Wang D; Meng Q; Xu Q; Sun Q; Yan X; Shen L; Jiang H; Xia K; Wang J; Guo J; Liang F; Li J; Tang B
    Front Genet; 2022; 13():810595. PubMed ID: 35601492
    [No Abstract]   [Full Text] [Related]  

  • 20. LUSTR: a new customizable tool for calling genome-wide germline and somatic short tandem repeat variants.
    Lu J; Toro C; Adams DR; ; Moreno CAM; Lee WP; Leung YY; Harms MB; Vardarajan B; Heinzen EL
    BMC Genomics; 2024 Jan; 25(1):115. PubMed ID: 38279154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.