These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 3801413)
1. Characterization of elapidae snake venom components using optimized reverse-phase high-performance liquid chromatographic conditions and screening assays for alpha-neurotoxin and phospholipase A2 activities. Bougis PE; Marchot P; Rochat H Biochemistry; 1986 Nov; 25(22):7235-43. PubMed ID: 3801413 [TBL] [Abstract][Full Text] [Related]
2. Characterization of alpha-neurotoxin and phospholipase A2 activities from Micrurus venoms. Determination of the amino acid sequence and receptor-binding ability of the major alpha-neurotoxin from Micrurus nigrocinctus nigrocinctus. Rosso JP; Vargas-Rosso O; Gutiérrez JM; Rochat H; Bougis PE Eur J Biochem; 1996 May; 238(1):231-9. PubMed ID: 8665942 [TBL] [Abstract][Full Text] [Related]
3. Factors influencing the hemolysis of human erythrocytes by cardiotoxins from Naja naja kaouthia and Naja naja atra venoms and a phospholipase A2 with cardiotoxin-like activities from Bungarus fasciatus venom. Jiang MS; Fletcher JE; Smith LA Toxicon; 1989; 27(2):247-57. PubMed ID: 2718193 [TBL] [Abstract][Full Text] [Related]
4. In vivo synergy of cardiotoxin and phospholipase A2 from the elapid snake Naja mossambica mossambica. Bougis PE; Marchot P; Rochat H Toxicon; 1987; 25(4):427-31. PubMed ID: 3617080 [TBL] [Abstract][Full Text] [Related]
5. Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca. Lauridsen LP; Laustsen AH; Lomonte B; Gutiérrez JM J Proteomics; 2017 Jan; 150():98-108. PubMed ID: 27593527 [TBL] [Abstract][Full Text] [Related]
6. The relationship between high-affinity noncatalytic binding of snake venom phospholipases A2 to brain synaptic plasma membranes and their central lethal potencies. Rapuano BE; Yang CC; Rosenberg P Biochim Biophys Acta; 1986 Apr; 856(3):457-70. PubMed ID: 3964691 [TBL] [Abstract][Full Text] [Related]
7. Selective loss of binding sites for the iodinated alpha-neurotoxin I from Naja mossambica mossambica venom upon enzymatic deglycosylation of Torpedo electric organ membranes. Zeghloul S; Marchot P; Bougis PE; Ronin C Eur J Biochem; 1988 Jun; 174(3):543-50. PubMed ID: 3134197 [TBL] [Abstract][Full Text] [Related]
8. Antibody-mediated neutralization and binding-reversal studies on alpha-neurotoxins from Micrurus nigrocinctus nigrocinctus (coral snake) venom. Alape-Giron A; Stiles BG; Gutierrez JM Toxicon; 1996 Mar; 34(3):369-80. PubMed ID: 8730930 [TBL] [Abstract][Full Text] [Related]
9. On the inhibition of [Na+,K+]-ATPases by the components of Naja mossambica mossambica venom: evidence for two distinct rat brain [Na+,K+]-ATPase activities. Bougis PE; Khélif A; Rochat H Biochemistry; 1989 Apr; 28(7):3037-43. PubMed ID: 2545244 [TBL] [Abstract][Full Text] [Related]
10. Phospholipase A2 from Naja naja sputatrix venom is a muscarinic acetylcholine receptor inhibitor. Miyoshi S; Tu AT Arch Biochem Biophys; 1996 Apr; 328(1):17-25. PubMed ID: 8638927 [TBL] [Abstract][Full Text] [Related]
11. Functional, proteomic and transcriptomic characterization of the venom from Micrurus browni browni: Identification of the first lethal multimeric neurotoxin in coral snake venom. Bénard-Valle M; Neri-Castro E; Yañez-Mendoza MF; Lomonte B; Olvera A; Zamudio F; Restano-Cassulini R; Possani LD; Jiménez-Ferrer E; Alagón A J Proteomics; 2020 Aug; 225():103863. PubMed ID: 32526478 [TBL] [Abstract][Full Text] [Related]
12. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Laustsen AH; Gutiérrez JM; Lohse B; Rasmussen AR; Fernández J; Milbo C; Lomonte B Toxicon; 2015 Jun; 99():23-35. PubMed ID: 25771242 [TBL] [Abstract][Full Text] [Related]
13. Comparison of total protein and phospholipase A(2) levels in individual coralsnake venoms. Kopper RA; Harper GR; Zimmerman S; Hook J Toxicon; 2013 Dec; 76():59-62. PubMed ID: 24060378 [TBL] [Abstract][Full Text] [Related]
15. Pharmacokinetics of Naja sumatrana (equatorial spitting cobra) venom and its major toxins in experimentally envenomed rabbits. Yap MK; Tan NH; Sim SM; Fung SY; Tan CH PLoS Negl Trop Dis; 2014 Jun; 8(6):e2890. PubMed ID: 24901441 [TBL] [Abstract][Full Text] [Related]
16. Erythrocyte haemotoxicity profiling of snake venom toxins after nanofractionation. Xie C; Bittenbinder MA; Slagboom J; Arrahman A; Bruijns S; Somsen GW; Vonk FJ; Casewell NR; García-Vallejo JJ; Kool J J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Jun; 1176():122586. PubMed ID: 33839052 [TBL] [Abstract][Full Text] [Related]
17. Sequence characterization of venom toxins from Thailand cobra. Chiou SH; Lin WW; Chang WP Int J Pept Protein Res; 1989 Aug; 34(2):148-52. PubMed ID: 2807733 [TBL] [Abstract][Full Text] [Related]
18. Unlocking the secrets of banded coral snake (Calliophis intestinalis, Malaysia): A venom with proteome novelty, low toxicity and distinct antigenicity. Tan KY; Liew JL; Tan NH; Quah ESH; Ismail AK; Tan CH J Proteomics; 2019 Feb; 192():246-257. PubMed ID: 30243938 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of protein kinase C by snake venom toxins: comparison of enzyme inhibition, lethality and hemolysis among different cardiotoxin isoforms. Chiou SH; Chuang MH; Hung CC; Huang HC; Chen ST; Wang KT; Ho CL Biochem Mol Biol Int; 1995 Apr; 35(5):1103-12. PubMed ID: 7549929 [TBL] [Abstract][Full Text] [Related]
20. Acetylcholine receptor binding characteristics of snake and cone snail venom postsynaptic neurotoxins: further studies with a non-radioactive assay. Stiles BG Toxicon; 1993 Jul; 31(7):825-34. PubMed ID: 8212028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]