These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38014217)

  • 1. Viral vector eluting lenses for single-step targeted expression of genetically-encoded activity sensors for in vivo microendoscopic calcium imaging.
    Jons CK; Cheng D; Dong C; Meany EL; Nassi JJ; Appel EA
    bioRxiv; 2024 Sep; ():. PubMed ID: 38014217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral Vector Eluting Lenses for Single-Step Targeted Expression of Genetically-Encoded Activity Sensors for in Vivo Microendoscopic Calcium Imaging.
    Jons CK; Cheng D; Dong C; Meany EL; Nassi JJ; Appel EA
    Macromol Biosci; 2024 Sep; ():e2400359. PubMed ID: 39283817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-Optical Interrogation of Neural Circuits.
    Emiliani V; Cohen AE; Deisseroth K; Häusser M
    J Neurosci; 2015 Oct; 35(41):13917-26. PubMed ID: 26468193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereotaxic Viral Injection and Gradient-Index Lens Implantation for Deep Brain In Vivo Calcium Imaging.
    Thapa R; Liang B; Liu R; Li Y
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34694282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Two-Step GRIN Lens Coating for In Vivo Brain Imaging.
    Yang Y; Zhang L; Wang Z; Liang B; Barbera G; Moffitt C; Li Y; Lin DT
    Neurosci Bull; 2019 Jun; 35(3):419-424. PubMed ID: 30852804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Head-mounted microendoscopic calcium imaging in dorsal premotor cortex of behaving rhesus macaque.
    Bollimunta A; Santacruz SR; Eaton RW; Xu PS; Morrison JH; Moxon KA; Carmena JM; Nassi JJ
    Cell Rep; 2021 Jun; 35(11):109239. PubMed ID: 34133921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniscope GRIN Lens System for Calcium Imaging of Neuronal Activity from Deep Brain Structures in Behaving Animals.
    Zhang L; Liang B; Barbera G; Hawes S; Zhang Y; Stump K; Baum I; Yang Y; Li Y; Lin DT
    Curr Protoc Neurosci; 2019 Jan; 86(1):e56. PubMed ID: 30315730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An aspherical microlens assembly for deep brain fluorescence microendoscopy.
    Sato M; Sano S; Watanabe H; Kudo Y; Nakai J
    Biochem Biophys Res Commun; 2020 Jun; 527(2):447-452. PubMed ID: 32336546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring activity in neural circuits with genetically encoded indicators.
    Broussard GJ; Liang R; Tian L
    Front Mol Neurosci; 2014; 7():97. PubMed ID: 25538558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically encoded calcium indicators to probe complex brain circuit dynamics in vivo.
    Inoue M
    Neurosci Res; 2021 Aug; 169():2-8. PubMed ID: 32531233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrant hippocampal Ca
    Masala N; Mittag M; Giovannetti EA; O'Neil DA; Distler FJ; Rupprecht P; Helmchen F; Yuste R; Fuhrmann M; Beck H; Wenzel M; Kelly T
    Elife; 2024 Jul; 13():. PubMed ID: 39042440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging.
    Chien YF; Lin JY; Yeh PT; Hsu KJ; Tsai YH; Chen SK; Chu SW
    Biomed Opt Express; 2021 Jan; 12(1):162-172. PubMed ID: 33659072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Targeted Expression of Optogenetic Proteins Using Silk/AAV Films.
    Jackman SL; Chen CH; Regehr WG
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30882792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Successful In vivo Calcium Imaging with a Head-Mount Miniaturized Microscope in the Amygdala of Freely Behaving Mouse.
    Lee HS; Han JH
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32925887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk Fibroin Films Facilitate Single-Step Targeted Expression of Optogenetic Proteins.
    Jackman SL; Chen CH; Chettih SN; Neufeld SQ; Drew IR; Agba CK; Flaquer I; Stefano AN; Kennedy TJ; Belinsky JE; Roberston K; Beron CC; Sabatini BL; Harvey CD; Regehr WG
    Cell Rep; 2018 Mar; 22(12):3351-3361. PubMed ID: 29562189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging.
    Ohayon S; Caravaca-Aguirre A; Piestun R; DiCarlo JJ
    Biomed Opt Express; 2018 Apr; 9(4):1492-1509. PubMed ID: 29675297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering Brain Function by Miniaturized Fluorescence Microscopy in Freely Behaving Animals.
    Malvaut S; Constantinescu VS; Dehez H; Doric S; Saghatelyan A
    Front Neurosci; 2020; 14():819. PubMed ID: 32848576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits.
    Laing BT; Siemian JN; Sarsfield S; Aponte Y
    J Neurosci Methods; 2021 Jan; 348():109015. PubMed ID: 33259847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-guided sectioning for precise in situ localization and tissue interface analysis for brain-implanted optical fibers and GRIN lenses.
    Kahan A; Greenbaum A; Jang MJ; Robinson JE; Cho JR; Chen X; Kassraian P; Wagenaar DA; Gradinaru V
    Cell Rep; 2021 Sep; 36(13):109744. PubMed ID: 34592157
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.