BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38014260)

  • 1. Brain-wide neural recordings in mice navigating physical spaces enabled by a cranial exoskeleton.
    Hope J; Beckerle T; Cheng PH; Viavattine Z; Feldkamp M; Fausner S; Saxena K; Ko E; Hryb I; Carter R; Ebner T; Kodandaramaiah S
    Res Sq; 2023 Nov; ():. PubMed ID: 38014260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-wide neural recordings in mice navigating physical spaces enabled by a cranial exoskeleton.
    Hope J; Beckerle T; Cheng PH; Viavattine Z; Feldkamp M; Fausner S; Saxena K; Ko E; Hryb I; Carter R; Ebner T; Kodandaramaiah S
    bioRxiv; 2023 Jun; ():. PubMed ID: 37333228
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Ferreira-Fernandes E; Laranjo M; Reis T; Canijo B; Ferreira PA; Martins P; Vilarinho J; Tavakoli M; Kunicki C; Peça J
    Front Neural Circuits; 2023; 17():1293620. PubMed ID: 38186631
    [No Abstract]   [Full Text] [Related]  

  • 4. 512-Channel and 13-Region Simultaneous Recordings Coupled with Optogenetic Manipulation in Freely Behaving Mice.
    Xie K; Fox GE; Liu J; Tsien JZ
    Front Syst Neurosci; 2016; 10():48. PubMed ID: 27378865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fully Adapted Headstage With Custom Electrode Arrays Designed for Electrophysiological Experiments.
    Mourão FAG; Guarnieri LO; Amaral Júnior PA; Carvalho VR; Mendes EMAM; Moraes MFD
    Front Neurosci; 2021; 15():691788. PubMed ID: 35309085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale recording of neuronal activity in freely-moving mice at cellular resolution.
    Das A; Holden S; Borovicka J; Icardi J; O'Niel A; Chaklai A; Patel D; Patel R; Kaech Petrie S; Raber J; Dana H
    Nat Commun; 2023 Oct; 14(1):6399. PubMed ID: 37828016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a twin tetrode microdrive and headstage for hippocampal single unit recordings in behaving mice.
    Jeantet Y; Cho YH
    J Neurosci Methods; 2003 Oct; 129(2):129-34. PubMed ID: 14511816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A wireless multi-channel recording system for freely behaving mice and rats.
    Fan D; Rich D; Holtzman T; Ruther P; Dalley JW; Lopez A; Rossi MA; Barter JW; Salas-Meza D; Herwik S; Holzhammer T; Morizio J; Yin HH
    PLoS One; 2011; 6(7):e22033. PubMed ID: 21765934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outan: An On-Head System for Driving µLED Arrays Implanted in Freely Moving Mice.
    Tarnavsky Eitan A; Someck S; Zajac M; Socher E; Stark E
    IEEE Trans Biomed Circuits Syst; 2021 Apr; 15(2):303-313. PubMed ID: 33760740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and construction of a cost effective headstage for simultaneous neural stimulation and recording in the water maze.
    Shirvalkar PR; Shapiro ML
    J Vis Exp; 2010 Oct; (44):. PubMed ID: 20972415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Synchronous Neural Recording Platform for Multiple High-Resolution CMOS Probes and Passive Electrode Arrays.
    Angotzi GN; Malerba M; Boi F; Miele E; Maccione A; Amin H; Crepaldi M; Berdondini L
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):532-542. PubMed ID: 29877817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless multi-channel single unit recording in freely moving and vocalizing primates.
    Roy S; Wang X
    J Neurosci Methods; 2012 Jan; 203(1):28-40. PubMed ID: 21933683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.
    Michon F; Aarts A; Holzhammer T; Ruther P; Borghs G; McNaughton B; Kloosterman F
    J Neural Eng; 2016 Aug; 13(4):046018. PubMed ID: 27351591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible, high-resolution thin-film electrodes for human and animal neural research.
    Chiang CH; Wang C; Barth K; Rahimpour S; Trumpis M; Duraivel S; Rachinskiy I; Dubey A; Wingel KE; Wong M; Witham NS; Odell T; Woods V; Bent B; Doyle W; Friedman D; Bihler E; Reiche CF; Southwell DG; Haglund MM; Friedman AH; Lad SP; Devore S; Devinsky O; Solzbacher F; Pesaran B; Cogan G; Viventi J
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34010815
    [No Abstract]   [Full Text] [Related]  

  • 16. A novel device for real-time measurement and manipulation of licking behavior in head-fixed mice.
    Williams B; Speed A; Haider B
    J Neurophysiol; 2018 Dec; 120(6):2975-2987. PubMed ID: 30256741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding of cortex-wide brain activity from local recordings of neural potentials.
    Liu X; Ren C; Huang Z; Wilson M; Kim JH; Lu Y; Ramezani M; Komiyama T; Kuzum D
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34706356
    [No Abstract]   [Full Text] [Related]  

  • 18. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals.
    Berényi A; Somogyvári Z; Nagy AJ; Roux L; Long JD; Fujisawa S; Stark E; Leonardo A; Harris TD; Buzsáki G
    J Neurophysiol; 2014 Mar; 111(5):1132-49. PubMed ID: 24353300
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.